|
import torch |
|
|
|
from .synthesizer import SynthesizerTrnMsNSFsid |
|
|
|
|
|
def export_onnx(from_cpkt_pth: str, to_onnx_pth: str) -> str: |
|
cpt = torch.load(from_cpkt_pth, map_location="cpu") |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768 |
|
|
|
test_phone = torch.rand(1, 200, vec_channels) |
|
test_phone_lengths = torch.tensor([200]).long() |
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255) |
|
test_pitchf = torch.rand(1, 200) |
|
test_ds = torch.LongTensor([0]) |
|
test_rnd = torch.rand(1, 192, 200) |
|
|
|
device = "cpu" |
|
|
|
net_g = SynthesizerTrnMsNSFsid( |
|
*cpt["config"], encoder_dim=vec_channels |
|
) |
|
net_g.load_state_dict(cpt["weight"], strict=False) |
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] |
|
output_names = [ |
|
"audio", |
|
] |
|
|
|
torch.onnx.export( |
|
net_g, |
|
( |
|
test_phone.to(device), |
|
test_phone_lengths.to(device), |
|
test_pitch.to(device), |
|
test_pitchf.to(device), |
|
test_ds.to(device), |
|
test_rnd.to(device), |
|
), |
|
to_onnx_pth, |
|
dynamic_axes={ |
|
"phone": [1], |
|
"pitch": [1], |
|
"pitchf": [1], |
|
"rnd": [2], |
|
}, |
|
do_constant_folding=False, |
|
opset_version=17, |
|
verbose=False, |
|
input_names=input_names, |
|
output_names=output_names, |
|
) |
|
return "Finished" |
|
|