bert_base_tcm_teste / README.md
ricardo-filho's picture
update model card README.md
6463812
|
raw
history blame
12.3 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: bert_base_tcm_teste
    results: []

bert_base_tcm_teste

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0205
  • Criterio Julgamento Precision: 0.7719
  • Criterio Julgamento Recall: 0.8462
  • Criterio Julgamento F1: 0.8073
  • Criterio Julgamento Number: 104
  • Data Sessao Precision: 0.7812
  • Data Sessao Recall: 0.9091
  • Data Sessao F1: 0.8403
  • Data Sessao Number: 55
  • Modalidade Licitacao Precision: 0.9507
  • Modalidade Licitacao Recall: 0.9620
  • Modalidade Licitacao F1: 0.9563
  • Modalidade Licitacao Number: 421
  • Numero Exercicio Precision: 0.9375
  • Numero Exercicio Recall: 0.9730
  • Numero Exercicio F1: 0.9549
  • Numero Exercicio Number: 185
  • Objeto Licitacao Precision: 0.5309
  • Objeto Licitacao Recall: 0.7288
  • Objeto Licitacao F1: 0.6143
  • Objeto Licitacao Number: 59
  • Valor Objeto Precision: 0.8409
  • Valor Objeto Recall: 0.9024
  • Valor Objeto F1: 0.8706
  • Valor Objeto Number: 41
  • Overall Precision: 0.8719
  • Overall Recall: 0.9283
  • Overall F1: 0.8992
  • Overall Accuracy: 0.9967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Criterio Julgamento Precision Criterio Julgamento Recall Criterio Julgamento F1 Criterio Julgamento Number Data Sessao Precision Data Sessao Recall Data Sessao F1 Data Sessao Number Modalidade Licitacao Precision Modalidade Licitacao Recall Modalidade Licitacao F1 Modalidade Licitacao Number Numero Exercicio Precision Numero Exercicio Recall Numero Exercicio F1 Numero Exercicio Number Objeto Licitacao Precision Objeto Licitacao Recall Objeto Licitacao F1 Objeto Licitacao Number Valor Objeto Precision Valor Objeto Recall Valor Objeto F1 Valor Objeto Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0168 0.96 2750 0.0169 0.7016 0.8365 0.7632 104 0.6707 1.0 0.8029 55 0.9424 0.9715 0.9567 421 0.9110 0.9405 0.9255 185 0.3304 0.6271 0.4327 59 0.76 0.9268 0.8352 41 0.8056 0.9249 0.8611 0.9950
0.0164 1.92 5500 0.0125 0.7565 0.8365 0.7945 104 0.6923 0.9818 0.8120 55 0.9491 0.9739 0.9613 421 0.9375 0.9730 0.9549 185 0.4138 0.6102 0.4932 59 0.8085 0.9268 0.8636 41 0.8465 0.9306 0.8866 0.9965
0.0076 2.88 8250 0.0204 0.7184 0.7115 0.7150 104 0.8070 0.8364 0.8214 55 0.9468 0.9715 0.9590 421 0.9282 0.9784 0.9526 185 0.4783 0.5593 0.5156 59 0.7209 0.7561 0.7381 41 0.8610 0.8948 0.8776 0.9961
0.0067 3.84 11000 0.0168 0.7589 0.8173 0.7870 104 0.8 0.8 0.8000 55 0.9487 0.9667 0.9576 421 0.9319 0.9622 0.9468 185 0.5309 0.7288 0.6143 59 0.8636 0.9268 0.8941 41 0.8717 0.9191 0.8948 0.9965
0.0043 4.8 13750 0.0144 0.736 0.8846 0.8035 104 0.8033 0.8909 0.8448 55 0.9512 0.9715 0.9612 421 0.9316 0.9568 0.944 185 0.5135 0.6441 0.5714 59 0.8444 0.9268 0.8837 41 0.8681 0.9283 0.8972 0.9967
0.0072 5.76 16500 0.0161 0.8091 0.8558 0.8318 104 0.7237 1.0 0.8397 55 0.9487 0.9667 0.9576 421 0.9326 0.9730 0.9524 185 0.4318 0.6441 0.5170 59 0.8222 0.9024 0.8605 41 0.8565 0.9318 0.8926 0.9966
0.003 6.72 19250 0.0205 0.7719 0.8462 0.8073 104 0.7812 0.9091 0.8403 55 0.9507 0.9620 0.9563 421 0.9375 0.9730 0.9549 185 0.5309 0.7288 0.6143 59 0.8409 0.9024 0.8706 41 0.8719 0.9283 0.8992 0.9967
0.0033 7.68 22000 0.0197 0.7736 0.7885 0.7810 104 0.7463 0.9091 0.8197 55 0.9466 0.9691 0.9577 421 0.9227 0.9676 0.9446 185 0.5286 0.6271 0.5736 59 0.7442 0.7805 0.7619 41 0.8650 0.9110 0.8874 0.9964
0.0043 8.64 24750 0.0250 0.7607 0.8558 0.8054 104 0.7612 0.9273 0.8361 55 0.9400 0.9667 0.9532 421 0.9427 0.9784 0.9602 185 0.5479 0.6780 0.6061 59 0.8043 0.9024 0.8506 41 0.8675 0.9306 0.8979 0.9965
0.0014 9.61 27500 0.0257 0.8018 0.8558 0.8279 104 0.7391 0.9273 0.8226 55 0.9417 0.9596 0.9506 421 0.9372 0.9676 0.9521 185 0.5143 0.6102 0.5581 59 0.8 0.8780 0.8372 41 0.8689 0.9191 0.8933 0.9966
0.0025 10.57 30250 0.0258 0.7798 0.8173 0.7981 104 0.7424 0.8909 0.8099 55 0.9465 0.9667 0.9565 421 0.9424 0.9730 0.9574 185 0.5352 0.6441 0.5846 59 0.8222 0.9024 0.8605 41 0.8728 0.9202 0.8959 0.9963
0.0016 11.53 33000 0.0273 0.7925 0.8077 0.8000 104 0.7246 0.9091 0.8065 55 0.9485 0.9620 0.9552 421 0.9282 0.9784 0.9526 185 0.56 0.7119 0.6269 59 0.8409 0.9024 0.8706 41 0.8723 0.9237 0.8972 0.9964

Framework versions

  • Transformers 4.21.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1