File size: 9,320 Bytes
f8f0ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d710f0c
 
 
 
 
 
 
 
f8f0ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d710f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f0ccb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1050
- Answer: {'precision': 0.37133808392715756, 'recall': 0.5797280593325093, 'f1': 0.45270270270270274, 'number': 809}
- Header: {'precision': 0.32926829268292684, 'recall': 0.226890756302521, 'f1': 0.26865671641791045, 'number': 119}
- Question: {'precision': 0.49682539682539684, 'recall': 0.5877934272300469, 'f1': 0.538494623655914, 'number': 1065}
- Overall Precision: 0.4307
- Overall Recall: 0.5630
- Overall F1: 0.4880
- Overall Accuracy: 0.6093

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                      | Header                                                                                                      | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8038        | 1.0   | 10   | 1.5073          | {'precision': 0.06441476826394343, 'recall': 0.10135970333745364, 'f1': 0.07877041306436118, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.24326241134751772, 'recall': 0.3220657276995305, 'f1': 0.2771717171717171, 'number': 1065}  | 0.1584            | 0.2132         | 0.1818     | 0.3843           |
| 1.4521        | 2.0   | 20   | 1.3396          | {'precision': 0.20421753607103219, 'recall': 0.45488257107540175, 'f1': 0.28188433550363845, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.2649350649350649, 'recall': 0.38309859154929576, 'f1': 0.31324376199616116, 'number': 1065} | 0.2321            | 0.3894         | 0.2909     | 0.4184           |
| 1.278         | 3.0   | 30   | 1.2050          | {'precision': 0.2645794966236955, 'recall': 0.5327564894932015, 'f1': 0.3535684987694832, 'number': 809}    | {'precision': 0.12903225806451613, 'recall': 0.06722689075630252, 'f1': 0.08839779005524862, 'number': 119} | {'precision': 0.34989503149055284, 'recall': 0.4694835680751174, 'f1': 0.400962309542903, 'number': 1065}   | 0.3010            | 0.4711         | 0.3673     | 0.4760           |
| 1.1503        | 4.0   | 40   | 1.1044          | {'precision': 0.28089080459770116, 'recall': 0.48331273176761436, 'f1': 0.3552930486142663, 'number': 809}  | {'precision': 0.2391304347826087, 'recall': 0.18487394957983194, 'f1': 0.2085308056872038, 'number': 119}   | {'precision': 0.4, 'recall': 0.5295774647887324, 'f1': 0.45575757575757575, 'number': 1065}                 | 0.3376            | 0.4902         | 0.3998     | 0.5630           |
| 1.07          | 5.0   | 50   | 1.1546          | {'precision': 0.30014025245441794, 'recall': 0.5290482076637825, 'f1': 0.38299776286353465, 'number': 809}  | {'precision': 0.3188405797101449, 'recall': 0.18487394957983194, 'f1': 0.23404255319148937, 'number': 119}  | {'precision': 0.4058373870743572, 'recall': 0.5483568075117371, 'f1': 0.4664536741214057, 'number': 1065}   | 0.3524            | 0.5188         | 0.4197     | 0.5383           |
| 0.9914        | 6.0   | 60   | 1.0507          | {'precision': 0.3119065010956903, 'recall': 0.5278121137206427, 'f1': 0.3921028466483012, 'number': 809}    | {'precision': 0.2345679012345679, 'recall': 0.15966386554621848, 'f1': 0.18999999999999997, 'number': 119}  | {'precision': 0.4122938530734633, 'recall': 0.5164319248826291, 'f1': 0.45852438516048355, 'number': 1065}  | 0.3578            | 0.4997         | 0.4170     | 0.6002           |
| 0.9373        | 7.0   | 70   | 1.0652          | {'precision': 0.3710691823899371, 'recall': 0.43757725587144625, 'f1': 0.4015882019285309, 'number': 809}   | {'precision': 0.25510204081632654, 'recall': 0.21008403361344538, 'f1': 0.23041474654377883, 'number': 119} | {'precision': 0.4739583333333333, 'recall': 0.5981220657276995, 'f1': 0.5288501452885015, 'number': 1065}   | 0.4240            | 0.5098         | 0.4630     | 0.6006           |
| 0.8833        | 8.0   | 80   | 1.0389          | {'precision': 0.3351605324980423, 'recall': 0.5290482076637825, 'f1': 0.4103547459252157, 'number': 809}    | {'precision': 0.375, 'recall': 0.20168067226890757, 'f1': 0.2622950819672132, 'number': 119}                | {'precision': 0.44528301886792454, 'recall': 0.5539906103286385, 'f1': 0.49372384937238495, 'number': 1065} | 0.3908            | 0.5228         | 0.4473     | 0.6143           |
| 0.8029        | 9.0   | 90   | 1.0520          | {'precision': 0.3685612788632327, 'recall': 0.5129789864029666, 'f1': 0.4289405684754522, 'number': 809}    | {'precision': 0.28695652173913044, 'recall': 0.2773109243697479, 'f1': 0.2820512820512821, 'number': 119}   | {'precision': 0.4902874902874903, 'recall': 0.5924882629107981, 'f1': 0.5365646258503401, 'number': 1065}   | 0.4268            | 0.5414         | 0.4773     | 0.6023           |
| 0.7658        | 10.0  | 100  | 1.0764          | {'precision': 0.3386511965192168, 'recall': 0.5772558714462299, 'f1': 0.42687385740402195, 'number': 809}   | {'precision': 0.3709677419354839, 'recall': 0.19327731092436976, 'f1': 0.2541436464088398, 'number': 119}   | {'precision': 0.4847986852917009, 'recall': 0.5539906103286385, 'f1': 0.5170902716914987, 'number': 1065}   | 0.4063            | 0.5419         | 0.4644     | 0.6066           |
| 0.7112        | 11.0  | 110  | 1.0675          | {'precision': 0.3728963684676705, 'recall': 0.5203955500618047, 'f1': 0.43446852425180593, 'number': 809}   | {'precision': 0.3333333333333333, 'recall': 0.21008403361344538, 'f1': 0.2577319587628866, 'number': 119}   | {'precision': 0.4918032786885246, 'recall': 0.5915492957746479, 'f1': 0.5370843989769821, 'number': 1065}   | 0.4330            | 0.5399         | 0.4806     | 0.6124           |
| 0.6875        | 12.0  | 120  | 1.1100          | {'precision': 0.37746256895193064, 'recall': 0.5920889987639061, 'f1': 0.46102021174205965, 'number': 809}  | {'precision': 0.33783783783783783, 'recall': 0.21008403361344538, 'f1': 0.25906735751295334, 'number': 119} | {'precision': 0.514554794520548, 'recall': 0.564319248826291, 'f1': 0.5382892969099866, 'number': 1065}     | 0.4401            | 0.5544         | 0.4907     | 0.6102           |
| 0.6571        | 13.0  | 130  | 1.0804          | {'precision': 0.36231884057971014, 'recall': 0.5253399258343634, 'f1': 0.4288597376387487, 'number': 809}   | {'precision': 0.313953488372093, 'recall': 0.226890756302521, 'f1': 0.2634146341463415, 'number': 119}      | {'precision': 0.46940244780417567, 'recall': 0.612206572769953, 'f1': 0.5313773431132844, 'number': 1065}   | 0.4169            | 0.5539         | 0.4758     | 0.6141           |
| 0.6564        | 14.0  | 140  | 1.0934          | {'precision': 0.37943262411347517, 'recall': 0.5290482076637825, 'f1': 0.44192049561177077, 'number': 809}  | {'precision': 0.37662337662337664, 'recall': 0.24369747899159663, 'f1': 0.29591836734693877, 'number': 119} | {'precision': 0.49803613511390415, 'recall': 0.5953051643192488, 'f1': 0.542343883661249, 'number': 1065}   | 0.4403            | 0.5474         | 0.4880     | 0.6215           |
| 0.6558        | 15.0  | 150  | 1.1050          | {'precision': 0.37133808392715756, 'recall': 0.5797280593325093, 'f1': 0.45270270270270274, 'number': 809}  | {'precision': 0.32926829268292684, 'recall': 0.226890756302521, 'f1': 0.26865671641791045, 'number': 119}   | {'precision': 0.49682539682539684, 'recall': 0.5877934272300469, 'f1': 0.538494623655914, 'number': 1065}   | 0.4307            | 0.5630         | 0.4880     | 0.6093           |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0