Edit model card

SentenceTransformer based on FacebookAI/roberta-large-mnli

This is a sentence-transformers model finetuned from FacebookAI/roberta-large-mnli. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: FacebookAI/roberta-large-mnli
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_facebook_large_mnli_openVino2")
# Run inference
sentences = [
    'A motorbike rider is barreling across a grass lawn.',
    'The rider is outdoors on a motorbike.',
    'The girl is wearing a shirt.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8457
spearman_cosine 0.8101
pearson_manhattan 0.8108
spearman_manhattan 0.7917
pearson_euclidean 0.8106
spearman_euclidean 0.7916
pearson_dot 0.8567
spearman_dot 0.8163
pearson_max 0.8567
spearman_max 0.8163

Training Details

Training Dataset

Unnamed Dataset

  • Size: 72,338 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string int
    details
    • min: 5 tokens
    • mean: 18.11 tokens
    • max: 82 tokens
    • min: 5 tokens
    • mean: 12.82 tokens
    • max: 65 tokens
    • 0: ~50.70%
    • 1: ~49.30%
  • Samples:
    sentence_0 sentence_1 label
    Hows would you create strategies and tactics in various combat situations? I have girlfriend and their parents accepted for my marriage, I m working in Nagpur but her parents wanted me to shift Bangalore? Is it valid wish? 0
    Man from the army speaking with civilian women. The man is a sergeant 0
    An old man with a white shirt and black pants sits on a chair in the opening of a stone tunnel. Someone has black pants. 1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss eval_spearman_max
0.1106 500 0.1845 0.6681
0.2211 1000 0.0942 0.7711
0.3317 1500 0.0821 0.6355
0.4423 2000 0.0794 0.7283
0.5529 2500 0.0788 0.7129
0.6634 3000 0.0737 0.7853
0.7740 3500 0.07 0.7013
0.8846 4000 0.0686 0.7809
0.9951 4500 0.0683 0.7578
1.0 4522 - 0.7976
1.1057 5000 0.07 0.7749
1.2163 5500 0.0656 0.7826
1.3268 6000 0.0587 0.8032
1.4374 6500 0.0584 0.7666
1.5480 7000 0.0582 0.7917
1.6586 7500 0.0546 0.7945
1.7691 8000 0.0528 0.7786
1.8797 8500 0.051 0.7732
1.9903 9000 0.0527 0.7996
2.0 9044 - 0.7898
2.1008 9500 0.0509 0.7957
2.2114 10000 0.0492 0.7988
2.3220 10500 0.0451 0.8044
2.4326 11000 0.0443 0.7961
2.5431 11500 0.0445 0.7975
2.6537 12000 0.0433 0.8054
2.7643 12500 0.0394 0.7890
2.8748 13000 0.0387 0.8020
2.9854 13500 0.0401 0.8096
3.0 13566 - 0.8087
3.0960 14000 0.0399 0.8098
3.2065 14500 0.039 0.8077
3.3171 15000 0.0346 0.8021
3.4277 15500 0.0339 0.8082
3.5383 16000 0.0347 0.8150
3.6488 16500 0.0352 0.8144
3.7594 17000 0.032 0.8141
3.8700 17500 0.0326 0.8151
3.9805 18000 0.0318 0.8162
4.0 18088 - 0.8163

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for richie-ghost/sbert_facebook_large_mnli_openVino2

Finetuned
(7)
this model

Evaluation results