Edit model card

videomae-base-ipm_all_videos

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4713
  • Accuracy: 0.8559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3600

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7831 0.02 60 1.8965 0.1186
1.7706 1.02 120 1.9115 0.1186
1.7497 2.02 180 1.8985 0.1356
1.5214 3.02 240 1.4807 0.3475
1.1458 4.02 300 1.7024 0.3559
1.1587 5.02 360 1.6771 0.2966
0.9256 6.02 420 1.6428 0.3814
1.265 7.02 480 1.5169 0.5
0.8271 8.02 540 1.0310 0.5847
0.6011 9.02 600 1.1739 0.5508
0.9542 10.02 660 1.3323 0.5424
1.1231 11.02 720 1.4279 0.4915
0.728 12.02 780 2.1913 0.4661
0.5991 13.02 840 1.1088 0.6271
1.0613 14.02 900 1.3781 0.5
0.9121 15.02 960 1.4224 0.5424
0.6083 16.02 1020 0.8779 0.6695
0.408 17.02 1080 0.8512 0.7119
0.3741 18.02 1140 0.8884 0.7034
0.8906 19.02 1200 1.1396 0.6017
0.568 20.02 1260 0.7380 0.6949
0.4135 21.02 1320 0.7966 0.6525
0.5492 22.02 1380 0.9815 0.6780
0.902 23.02 1440 0.9267 0.6441
0.6889 24.02 1500 1.4313 0.5763
0.788 25.02 1560 1.2156 0.5678
0.7324 26.02 1620 0.8015 0.6780
0.6733 27.02 1680 0.8682 0.6949
0.498 28.02 1740 0.8767 0.6949
0.5558 29.02 1800 0.9248 0.6780
0.5583 30.02 1860 1.1784 0.6356
0.3905 31.02 1920 1.0646 0.6864
0.3728 32.02 1980 0.8338 0.7797
0.5988 33.02 2040 0.8339 0.7542
0.3636 34.02 2100 0.7577 0.7627
0.505 35.02 2160 1.0310 0.6864
0.5344 36.02 2220 0.6345 0.7458
0.2814 37.02 2280 0.9954 0.7119
0.2187 38.02 2340 0.7515 0.7797
0.4876 39.02 2400 0.8392 0.7627
0.1148 40.02 2460 0.6182 0.8729
0.3139 41.02 2520 1.1651 0.6949
0.2638 42.02 2580 0.8299 0.7797
0.1989 43.02 2640 0.5943 0.8220
0.5473 44.02 2700 0.6514 0.8644
0.3921 45.02 2760 0.6708 0.8220
0.1756 46.02 2820 0.5431 0.8305
0.1089 47.02 2880 0.6040 0.8136
0.3616 48.02 2940 0.5281 0.8475
0.2752 49.02 3000 0.6430 0.8305
0.3847 50.02 3060 0.5640 0.8644
0.0909 51.02 3120 0.5178 0.8559
0.3426 52.02 3180 0.3770 0.8983
0.0516 53.02 3240 0.5365 0.8390
0.2133 54.02 3300 0.5919 0.8475
0.1382 55.02 3360 0.5112 0.8390
0.1803 56.02 3420 0.5173 0.8475
0.1352 57.02 3480 0.5207 0.8390
0.4445 58.02 3540 0.4763 0.8559
0.3249 59.02 3600 0.4713 0.8559

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using rickysk/videomae-base-ipm_all_videos 2