|
--- |
|
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png |
|
license: mit |
|
datasets: |
|
- Anthropic/hh-rlhf |
|
language: |
|
- ja |
|
- en |
|
inference: false |
|
base_model: rinna/bilingual-gpt-neox-4b |
|
--- |
|
|
|
# bilingual-gpt-neox-4b-instruction-ppo |
|
|
|
![rinna-icon](./rinna.png) |
|
|
|
--- |
|
|
|
# Overview |
|
This repository provides an English-Japanese bilingual GPT-NeoX model of 3.8 billion parameters. |
|
|
|
The model is based on [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft) and has been aligned to serve as an instruction-following conversational agent. |
|
|
|
* **Model architecture** |
|
|
|
A 36-layer, 2816-hidden-size transformer-based language model. |
|
|
|
* **RLHF** |
|
|
|
Following the [OpenAI InstructGPT paper](https://arxiv.org/abs/2203.02155), **Reinforcement Learning from Human Feedback** (RLHF) has been applied to aligning the model's behaviour with input instructions. Particularly, the model has been trained in two stages, i.e. **Supervised Fine-Tuning** (SFT) and [PPO](https://arxiv.org/abs/1707.06347)-based **Reinforcement Learning** (RL). |
|
* The first SFT stage produces [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft). |
|
* The second RL stage produces this model. |
|
|
|
* **Reinforcement learning** |
|
|
|
We used [CarperAI/trlx](https://github.com/CarperAI/trlx) and its implementation of the PPO algorithm for the RL stage. |
|
|
|
The RL data is the subset of the following dataset and has been translated into Japanese. |
|
* [Anthropic HH RLHF data](https://huggingface.co/datasets/Anthropic/hh-rlhf) |
|
|
|
* **Model Series** |
|
|
|
| Variant | Link | |
|
| :-- | :--| |
|
| Bilingual 4B MiniGPT4 | https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4 | |
|
| Bilingual 4B PPO | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo | |
|
| Bilingual 4B SFT | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft | |
|
| Bilingual 4B 8K | https://huggingface.co/rinna/bilingual-gpt-neox-4b-8k | |
|
| Bilingual 4B | https://huggingface.co/rinna/bilingual-gpt-neox-4b | |
|
| Japanese 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo | |
|
| Japanese 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 | |
|
| Japanese 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft | |
|
| Japanese 3.6B | https://huggingface.co/rinna/japanese-gpt-neox-3.6b | |
|
|
|
* **Contributors** |
|
|
|
[Tianyu Zhao](https://huggingface.co/tianyuz) and [Kei Sawada](https://huggingface.co/keisawada) |
|
|
|
--- |
|
|
|
# Benchmarking |
|
|
|
Our evaluation experiments suggest that the PPO does not particularly improve the model's performance on the Japanese LLM benchmark in comparison with [Bilingual GPT-NeoX 4B SFT](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft), but we have seen **better conversation experience** on the PPO model than its SFT counterpart. |
|
- *The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.* |
|
- *The 6-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, JSQuAD, XWinograd, and JAQKET-v2.* |
|
|
|
| Model | 4-task average accuracy | 6-task average accuracy | |
|
| :-- | :-- | :-- | |
|
| **bilingual-gpt-neox-4b-instruction-ppo** | **61.01** | **61.16** | |
|
| bilingual-gpt-neox-4b-instruction-sft | 61.02 | 61.69 | |
|
| bilingual-gpt-neox-4b | 56.12 | 51.83 | |
|
| japanese-gpt-neox-3.6b-instruction-ppo | 59.86 | 60.07 | |
|
| japanese-gpt-neox-3.6b | 55.07 | 50.32 | |
|
|
|
--- |
|
|
|
# I/O Format |
|
A special format has been adopted to construct inputs. |
|
* An input prompt is formatted as a conversation between `ユーザー` and `システム`. |
|
* Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"世界で一番高い山は?"`). |
|
* The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response. |
|
* All the utterances in the input prompt should be separated by a newline `\n`. |
|
|
|
Following is an example to construct input from a conversation. |
|
~~~python |
|
prompt = [ |
|
{ |
|
"speaker": "ユーザー", |
|
"text": "Hello, you are an assistant that helps me learn Japanese." |
|
}, |
|
{ |
|
"speaker": "システム", |
|
"text": "Sure, what can I do for you?" |
|
}, |
|
{ |
|
"speaker": "ユーザー", |
|
"text": "VRはなんですか。" |
|
} |
|
] |
|
prompt = [ |
|
f"{uttr['speaker']}: {uttr['text']}" |
|
for uttr in prompt |
|
] |
|
prompt = "\n".join(prompt) |
|
prompt = ( |
|
prompt |
|
+ "\n" |
|
+ "システム: " |
|
) |
|
print(prompt) |
|
""" |
|
ユーザー: Hello, you are an assistant that helps me learn Japanese. |
|
システム: Sure, what can I do for you? |
|
ユーザー: VRはなんですか。 |
|
システム: |
|
""" |
|
~~~ |
|
|
|
--- |
|
|
|
# How to use the model |
|
|
|
**Notice:** Since the model is **sensitive to decoding hyper-parameters** (e.g. `temperature`, `top_p`, `top_k`, `repetition_penalty`), it is suggested to explore the best setting for your task. |
|
|
|
~~~~python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo", use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo") |
|
|
|
if torch.cuda.is_available(): |
|
model = model.to("cuda") |
|
|
|
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate( |
|
token_ids.to(model.device), |
|
max_new_tokens=512, |
|
do_sample=True, |
|
temperature=1.0, |
|
top_p=0.85, |
|
pad_token_id=tokenizer.pad_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):]) |
|
print(output) |
|
"""VRとはVirtual Realityの略で、仮想現実とも呼ばれます。これは、コンピューターを使用して仮想世界を作り出し、仮想世界上でコンピューターのゲームや仮想世界を体験するための技術です。この技術は、コンピューターやモバイ ルデバイスの進歩によって、2015年以降、ますます普及しています。VRは、ゲームや仮想世界、その他のアプリケー ションなどのさまざまな分野で、コンピューターと人間の相互作用の新しい方法を提供しています。</s>""" |
|
~~~~ |
|
|
|
--- |
|
|
|
# Tokenization |
|
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. |
|
* The tokenizer has a vocabulary size of 65,536. |
|
* It uses *byte fallback* to decompose unknown text pieces into UTF-8 byte pieces to avoid producing `<UNK>` tokens. |
|
* It can recognize *consecutive whitespaces*, *newlines*, and *tabs* to handle structured texts better. |
|
* We turned off the default behaviour of prepending leading whitespace because it is not beneficial for processing Japanese. |
|
* Specifically, single whitespace is always processed as one token so that any English word won't have a preceding whitespace like in many other tokenizers (e.g. `_Hello`). |
|
* This decision trades the English processing efficiency for a unified way to treat whitespaces. |
|
* It leads to a significantly lower loss of next token prediction on English data because whitespaces are easy to predict. |
|
* **Don't forget to set `use_fast=False` to make the above features function correctly.** |
|
|
|
--- |
|
|
|
# How to cite |
|
```bibtex |
|
@misc{rinna-bilingual-gpt-neox-4b-instruction-ppo, |
|
title = {rinna/bilingual-gpt-neox-4b-instruction-ppo}, |
|
author = {Zhao, Tianyu and Sawada, Kei}, |
|
url = {https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo} |
|
} |
|
|
|
@inproceedings{sawada2024release, |
|
title = {Release of Pre-Trained Models for the {J}apanese Language}, |
|
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
month = {5}, |
|
year = {2024}, |
|
pages = {13898--13905}, |
|
url = {https://aclanthology.org/2024.lrec-main.1213}, |
|
note = {\url{https://arxiv.org/abs/2404.01657}} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
# Licenese |
|
[The MIT license](https://opensource.org/licenses/MIT) |