|
--- |
|
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png |
|
license: gemma |
|
language: |
|
- ja |
|
- en |
|
tags: |
|
- gemma2 |
|
- conversational |
|
base_model: |
|
- google/gemma-2-2b |
|
- google/gemma-2-2b-it |
|
- rinna/gemma-2-baku-2b |
|
base_model_relation: merge |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
|
|
# `Gemma 2 Baku 2B Instruct (rinna/gemma-2-baku-2b-it)` |
|
|
|
![rinna-icon](./rinna.png) |
|
|
|
# Overview |
|
|
|
The model is an instruction-tuned variant of [rinna/gemma-2-baku-2b](https://huggingface.co/rinna/gemma-2-baku-2b), utilizing Chat Vector and Odds Ratio Preference Optimization (ORPO) for fine-tuning. It adheres to the gemma-2 chat format. |
|
|
|
| Size | Continual Pre-Training | Instruction-Tuning | |
|
| :- | :- | :- | |
|
| 2B | Gemma 2 Baku 2B [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b) | Gemma 2 Baku 2B Instruct [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b-it) | |
|
|
|
* **Model architecture** |
|
|
|
A 26-layer, 2304-hidden-size transformer-based language model. Please refer to the [Gemma 2 Model Card](https://www.kaggle.com/models/google/gemma-2/) for detailed information on the model's architecture. |
|
|
|
* **Training** |
|
|
|
**Model merging.** The base model was endowed with instruction-following capabilities through a chat vector addition process. The chat vector was derived by subtracting the parameter vectors of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) from [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it), as follows. |
|
|
|
~~~~text |
|
rinna/gemma-2-baku-2b + 1.0 * (google/gemma-2-2b-it - google/gemma-2-2b) |
|
~~~~ |
|
|
|
During this process, the embedding layer was excluded during the subtraction and addition of parameter vectors. |
|
|
|
**ORPO** was applied using a subset of the following dataset to further refine the performance of the merged model. |
|
|
|
- rinna's internal dataset |
|
|
|
* **Contributors** |
|
|
|
- [Xinqi Chen](https://huggingface.co/Keely0419) |
|
- [Toshiaki Wakatsuki](https://huggingface.co/t-w) |
|
- [Kei Sawada](https://huggingface.co/keisawada) |
|
|
|
--- |
|
|
|
# Benchmarking |
|
|
|
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html). |
|
|
|
--- |
|
|
|
# How to use the model |
|
|
|
~~~~python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "rinna/gemma-2-baku-2b-it" |
|
dtype = torch.bfloat16 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cuda", |
|
torch_dtype=dtype, |
|
attn_implementation="eager", |
|
) |
|
|
|
chat = [ |
|
{ "role": "user", "content": "西田幾多郎とはどんな人物ですか?" }, |
|
] |
|
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
|
|
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=512, |
|
) |
|
|
|
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True) |
|
print(response) |
|
~~~~ |
|
|
|
It is recommended to use eager attention when conducting batch inference under bfloat16 precision. |
|
Currently, Gemma 2 yields NaN values for input sequences with padding when the default attention mechanism (torch.scaled_dot_product_attention) is employed in conjunction with bfloat16. |
|
|
|
--- |
|
|
|
# Tokenization |
|
The model uses the original [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) tokenizer. |
|
|
|
--- |
|
|
|
# How to cite |
|
```bibtex |
|
@misc{rinna-gemma-2-baku-2b-it, |
|
title = {rinna/gemma-2-baku-2b-it}, |
|
author = {Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei}, |
|
url = {https://huggingface.co/rinna/gemma-2-baku-2b-it} |
|
} |
|
|
|
@inproceedings{sawada2024release, |
|
title = {Release of Pre-Trained Models for the {J}apanese Language}, |
|
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
month = {5}, |
|
year = {2024}, |
|
pages = {13898--13905}, |
|
url = {https://aclanthology.org/2024.lrec-main.1213}, |
|
note = {\url{https://arxiv.org/abs/2404.01657}} |
|
} |
|
``` |
|
--- |
|
|
|
# References |
|
```bibtex |
|
@article{gemma-2-2024, |
|
title = {Gemma 2}, |
|
url = {https://www.kaggle.com/models/google/gemma-2}, |
|
publisher = {Kaggle}, |
|
author = {Gemma Team}, |
|
year = {2024} |
|
} |
|
|
|
@article{huang2023chat, |
|
title = {Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages}, |
|
author = {Huang, Shih-Cheng and Li, Pin-Zu and Hsu, Yu-Chi and Chen, Kuang-Ming and Lin, Yu Tung and Hsiao, Shih-Kai and Tzong-Han Tsai, Richard and Lee, Hung-yi}, |
|
year = {2023}, |
|
url = {https://arxiv.org/abs/2310.04799} |
|
} |
|
|
|
@article{hong2024orpo, |
|
title = {ORPO: Monolithic Preference Optimization without Reference Model}, |
|
author = {Hong, Jiwoo and Lee, Noah and Thorne, James}, |
|
year = {2024}, |
|
url = {https://arxiv.org/abs/2403.07691} |
|
} |
|
``` |
|
--- |
|
|
|
# License |
|
[Gemma Terms of Use](https://ai.google.dev/gemma/terms) |