|
--- |
|
license: llama3 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: llama3-8B_less_data_for_fact_update |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3-8B_less_data_for_fact_update |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7586 |
|
- Accuracy: 0.7733 |
|
- Precision: 0.8015 |
|
- Recall: 0.7267 |
|
- F1 score: 0.7622 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| |
|
| 0.8492 | 0.5 | 200 | 0.8538 | 0.65 | 0.6923 | 0.54 | 0.6067 | |
|
| 0.7574 | 1.0 | 400 | 0.6427 | 0.7267 | 0.8036 | 0.6 | 0.6870 | |
|
| 0.5003 | 1.5 | 600 | 0.5917 | 0.73 | 0.7066 | 0.7867 | 0.7445 | |
|
| 0.4629 | 2.0 | 800 | 0.6470 | 0.7567 | 0.8235 | 0.6533 | 0.7286 | |
|
| 0.3114 | 2.5 | 1000 | 0.6980 | 0.6967 | 0.7438 | 0.6 | 0.6642 | |
|
| 0.3031 | 3.0 | 1200 | 0.6128 | 0.7567 | 0.8130 | 0.6667 | 0.7326 | |
|
| 0.1783 | 3.5 | 1400 | 0.7288 | 0.7667 | 0.8175 | 0.6867 | 0.7464 | |
|
| 0.1737 | 4.0 | 1600 | 0.7242 | 0.7533 | 0.7969 | 0.68 | 0.7338 | |
|
| 0.0924 | 4.5 | 1800 | 0.7214 | 0.7733 | 0.7808 | 0.76 | 0.7703 | |
|
| 0.0669 | 5.0 | 2000 | 0.7586 | 0.7733 | 0.8015 | 0.7267 | 0.7622 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |