whisper-small-kur / README.md
rizgan's picture
Update README.md
1f6ca1d verified
metadata
language:
  - ku
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Kur - Rizgan Gerdenzeri
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_11_0
          config: kmr
          split: None
          args: 'config: kmr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 35.26864147088866

Whisper Small Kur - Rizgan Gerdenzeri

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5986
  • Wer: 35.2686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3355 1.7699 1000 0.4746 40.3146
0.0921 3.5398 2000 0.4746 36.7845
0.0142 5.3097 3000 0.5598 36.6251
0.004 7.0796 4000 0.5986 35.2686

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1