|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-hagupitKP |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-hagupitKP |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6372 |
|
- Rouge1: 48.834 |
|
- Rouge2: 33.4205 |
|
- Rougel: 48.6607 |
|
- Rougelsum: 48.681 |
|
- Gen Len: 8.5017 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.1542 | 1.0 | 6210 | 1.7110 | 47.2887 | 32.082 | 47.1742 | 47.2544 | 9.4784 | |
|
| 1.0404 | 2.0 | 12420 | 1.6650 | 47.6569 | 32.5934 | 47.4988 | 47.5605 | 9.0240 | |
|
| 0.9219 | 3.0 | 18630 | 1.6880 | 48.2258 | 32.5305 | 48.1079 | 48.1138 | 9.1102 | |
|
| 0.8346 | 4.0 | 24840 | 1.6372 | 48.834 | 33.4205 | 48.6607 | 48.681 | 8.5017 | |
|
| 0.8004 | 5.0 | 31050 | 1.6453 | 49.3895 | 33.5125 | 49.2774 | 49.2772 | 8.5736 | |
|
| 0.7556 | 6.0 | 37260 | 1.6455 | 49.7786 | 34.0706 | 49.6065 | 49.6091 | 8.3949 | |
|
| 0.7383 | 7.0 | 43470 | 1.6682 | 48.919 | 33.1249 | 48.7316 | 48.7785 | 8.4641 | |
|
| 0.7848 | 8.0 | 49680 | 1.6800 | 50.1876 | 34.2436 | 49.9813 | 50.0496 | 8.3799 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|