File size: 4,515 Bytes
4e677f2 7b86b4e 5617a47 4e677f2 7b86b4e 4e677f2 dff3db0 2acfe57 72470a2 2acfe57 5617a47 4e677f2 5617a47 4e677f2 927b33b 4e677f2 5617a47 4e677f2 5617a47 4e677f2 7b86b4e 4e677f2 7b86b4e 4e677f2 7b86b4e 4e677f2 7b86b4e 5617a47 7b86b4e 5617a47 7b86b4e 5617a47 7b86b4e 4e677f2 5617a47 7b86b4e 4e677f2 5617a47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
language:
- uk
license: mit
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-300m-uk
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice uk
type: common_voice
args: uk
metrics:
- name: Test WER
type: wer
value: 12.22
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-uk
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0927
- Wer: 0.1222
- Cer: 0.0204
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 240
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
| 9.0008 | 1.68 | 200 | 1.0 | 3.7590 | 1.0 |
| 3.4972 | 3.36 | 400 | 1.0 | 3.3933 | 1.0 |
| 3.3432 | 5.04 | 600 | 1.0 | 3.2617 | 1.0 |
| 3.2421 | 6.72 | 800 | 1.0 | 3.0712 | 1.0 |
| 1.9839 | 7.68 | 1000 | 0.1400 | 0.7204 | 0.6561 |
| 0.8017 | 9.36 | 1200 | 0.0766 | 0.3734 | 0.4159 |
| 0.5554 | 11.04 | 1400 | 0.0583 | 0.2621 | 0.3237 |
| 0.4309 | 12.68 | 1600 | 0.0486 | 0.2085 | 0.2753 |
| 0.3697 | 14.36 | 1800 | 0.0421 | 0.1746 | 0.2427 |
| 0.3293 | 16.04 | 2000 | 0.0388 | 0.1597 | 0.2243 |
| 0.2934 | 17.72 | 2200 | 0.0358 | 0.1428 | 0.2083 |
| 0.2704 | 19.4 | 2400 | 0.0333 | 0.1326 | 0.1949 |
| 0.2547 | 21.08 | 2600 | 0.0322 | 0.1255 | 0.1882 |
| 0.2366 | 22.76 | 2800 | 0.0309 | 0.1211 | 0.1815 |
| 0.2183 | 24.44 | 3000 | 0.0294 | 0.1159 | 0.1727 |
| 0.2115 | 26.13 | 3200 | 0.0280 | 0.1117 | 0.1661 |
| 0.1968 | 27.8 | 3400 | 0.0274 | 0.1063 | 0.1622 |
| 0.1922 | 29.48 | 3600 | 0.0269 | 0.1082 | 0.1598 |
| 0.1847 | 31.17 | 3800 | 0.0260 | 0.1061 | 0.1550 |
| 0.1715 | 32.84 | 4000 | 0.0252 | 0.1014 | 0.1496 |
| 0.1689 | 34.53 | 4200 | 0.0250 | 0.1012 | 0.1492 |
| 0.1655 | 36.21 | 4400 | 0.0243 | 0.0999 | 0.1450 |
| 0.1585 | 37.88 | 4600 | 0.0239 | 0.0967 | 0.1432 |
| 0.1492 | 39.57 | 4800 | 0.0237 | 0.0978 | 0.1421 |
| 0.1491 | 41.25 | 5000 | 0.0236 | 0.0963 | 0.1412 |
| 0.1453 | 42.93 | 5200 | 0.0230 | 0.0979 | 0.1373 |
| 0.1386 | 44.61 | 5400 | 0.0227 | 0.0959 | 0.1353 |
| 0.1387 | 46.29 | 5600 | 0.0226 | 0.0927 | 0.1355 |
| 0.1329 | 47.97 | 5800 | 0.0224 | 0.0951 | 0.1341 |
| 0.1295 | 49.65 | 6000 | 0.0219 | 0.0950 | 0.1306 |
| 0.1287 | 51.33 | 6200 | 0.0216 | 0.0937 | 0.1290 |
| 0.1277 | 53.02 | 6400 | 0.0215 | 0.0963 | 0.1294 |
| 0.1201 | 54.69 | 6600 | 0.0213 | 0.0959 | 0.1282 |
| 0.1199 | 56.38 | 6800 | 0.0215 | 0.0944 | 0.1286 |
| 0.1221 | 58.06 | 7000 | 0.0209 | 0.0938 | 0.1249 |
| 0.1145 | 59.68 | 7200 | 0.0208 | 0.0941 | 0.1254 |
| 0.1143 | 61.36 | 7400 | 0.0209 | 0.0941 | 0.1249 |
| 0.1143 | 63.04 | 7600 | 0.0209 | 0.0940 | 0.1248 |
| 0.1137 | 64.72 | 7800 | 0.0205 | 0.0931 | 0.1234 |
| 0.1125 | 66.4 | 8000 | 0.0204 | 0.0927 | 0.1222 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|