robotics-diffusion-transformer
commited on
Commit
•
5aa1106
1
Parent(s):
f4fb9ee
Update README.md
Browse files
README.md
CHANGED
@@ -36,23 +36,23 @@ Here's an example of how to use the RDT-1B model for inference on a Mobile-ALOHA
|
|
36 |
from scripts.agilex_model import create_model
|
37 |
CAMERA_NAMES = ['cam_high', 'cam_right_wrist', 'cam_left_wrist'] # Names of cameras used for visual input
|
38 |
config = {
|
39 |
-
'episode_len': 1000, #
|
40 |
'state_dim': 14, # Dimension of the robot's state
|
41 |
'chunk_size': 64, # Number of actions to predict in one step
|
42 |
'camera_names': CAMERA_NAMES,
|
43 |
}
|
44 |
-
|
45 |
-
pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384"
|
46 |
# Create the model with specified configuration
|
47 |
model = create_model(
|
48 |
args=config,
|
49 |
-
dtype=torch.bfloat16,
|
50 |
pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path,
|
51 |
-
control_frequency=
|
52 |
)
|
53 |
# Start inference process
|
54 |
lang_embeddings_path = 'your/language/embedding/path'
|
55 |
-
text_embedding = torch.load(lang_embeddings_path)['embeddings']
|
56 |
images: List(PIL.Image) = ... # The images from last 2 frame
|
57 |
proprio = ... # The current robot state
|
58 |
# Perform inference to predict the next chunk_size actions
|
|
|
36 |
from scripts.agilex_model import create_model
|
37 |
CAMERA_NAMES = ['cam_high', 'cam_right_wrist', 'cam_left_wrist'] # Names of cameras used for visual input
|
38 |
config = {
|
39 |
+
'episode_len': 1000, # Max length of one episode
|
40 |
'state_dim': 14, # Dimension of the robot's state
|
41 |
'chunk_size': 64, # Number of actions to predict in one step
|
42 |
'camera_names': CAMERA_NAMES,
|
43 |
}
|
44 |
+
control_frequency=25
|
45 |
+
pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384"
|
46 |
# Create the model with specified configuration
|
47 |
model = create_model(
|
48 |
args=config,
|
49 |
+
dtype=torch.bfloat16,
|
50 |
pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path,
|
51 |
+
control_frequency=control_frequency,
|
52 |
)
|
53 |
# Start inference process
|
54 |
lang_embeddings_path = 'your/language/embedding/path'
|
55 |
+
text_embedding = torch.load(lang_embeddings_path)['embeddings'] # Pre-computed language embeddings
|
56 |
images: List(PIL.Image) = ... # The images from last 2 frame
|
57 |
proprio = ... # The current robot state
|
58 |
# Perform inference to predict the next chunk_size actions
|