roequitz's picture
End of training
058840f verified
metadata
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-1509-0313-lr-0.0003-bs-8-maxep-10
    results: []

bart-abs-1509-0313-lr-0.0003-bs-8-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 7.5826
  • Rouge/rouge1: 0.2532
  • Rouge/rouge2: 0.0528
  • Rouge/rougel: 0.2067
  • Rouge/rougelsum: 0.2071
  • Bertscore/bertscore-precision: 0.8514
  • Bertscore/bertscore-recall: 0.8621
  • Bertscore/bertscore-f1: 0.8567
  • Meteor: 0.2303
  • Gen Len: 46.4909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.6961 1.0 109 5.5084 0.2572 0.0691 0.1962 0.1962 0.8672 0.8617 0.8644 0.2158 34.0
0.6838 2.0 218 5.7494 0.2975 0.0945 0.2493 0.2495 0.8739 0.8626 0.8681 0.2433 27.0
0.5113 3.0 327 6.0212 0.2722 0.0714 0.2029 0.2031 0.8612 0.8618 0.8615 0.2582 44.0
0.4108 4.0 436 6.5957 0.2916 0.064 0.2118 0.2121 0.8678 0.8659 0.8668 0.2243 47.0
0.3585 5.0 545 6.7542 0.2554 0.0561 0.198 0.1977 0.8531 0.8633 0.8581 0.2483 42.0
0.3094 6.0 654 6.9956 0.3041 0.0711 0.2307 0.2305 0.8646 0.8658 0.8652 0.2861 42.0
0.281 7.0 763 7.1181 0.2582 0.0781 0.2156 0.2154 0.8771 0.8626 0.8697 0.1855 29.0
0.261 8.0 872 7.2717 0.3097 0.0856 0.2463 0.2464 0.8589 0.8656 0.8622 0.2246 36.0
0.2415 9.0 981 7.4446 0.2906 0.0847 0.2272 0.2274 0.8671 0.8567 0.8618 0.1991 27.0
0.2228 10.0 1090 7.5826 0.2532 0.0528 0.2067 0.2071 0.8514 0.8621 0.8567 0.2303 46.4909

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1