roequitz's picture
End of training
26ec202 verified
|
raw
history blame
4.12 kB
metadata
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-1509-0313-lr-3e-05-bs-2-maxep-10
    results: []

bart-abs-1509-0313-lr-3e-05-bs-2-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0180
  • Rouge/rouge1: 0.4724
  • Rouge/rouge2: 0.2094
  • Rouge/rougel: 0.3964
  • Rouge/rougelsum: 0.3976
  • Bertscore/bertscore-precision: 0.8964
  • Bertscore/bertscore-recall: 0.8932
  • Bertscore/bertscore-f1: 0.8947
  • Meteor: 0.4217
  • Gen Len: 36.8818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.6813 1.0 434 2.4588 0.4636 0.2101 0.3907 0.3921 0.8975 0.8904 0.8937 0.4099 35.0727
0.6702 2.0 868 2.5377 0.4448 0.1862 0.3725 0.3735 0.8942 0.8887 0.8913 0.3825 35.7273
0.4591 3.0 1302 2.8762 0.4533 0.1916 0.3767 0.3778 0.8961 0.8897 0.8928 0.3911 35.2091
0.3165 4.0 1736 3.2129 0.4519 0.1976 0.3803 0.3806 0.8936 0.891 0.8922 0.4023 37.6364
0.2222 5.0 2170 3.4971 0.47 0.2049 0.392 0.3924 0.8959 0.8926 0.8941 0.4107 36.5545
0.1596 6.0 2604 3.6405 0.4607 0.2101 0.3853 0.3879 0.8943 0.8908 0.8924 0.4021 37.2273
0.1166 7.0 3038 3.7827 0.4759 0.2191 0.4086 0.4106 0.8988 0.8928 0.8956 0.4173 35.5727
0.0891 8.0 3472 3.9388 0.4677 0.2047 0.3905 0.3925 0.8933 0.8927 0.8929 0.417 38.7
0.0695 9.0 3906 3.9583 0.4775 0.2116 0.4032 0.4051 0.8981 0.8931 0.8955 0.4228 36.3182
0.0592 10.0 4340 4.0180 0.4724 0.2094 0.3964 0.3976 0.8964 0.8932 0.8947 0.4217 36.8818

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1