|
--- |
|
license: apache-2.0 |
|
base_model: sshleifer/distilbart-xsum-12-6 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-abs-1509-0313-lr-3e-06-bs-4-maxep-6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-abs-1509-0313-lr-3e-06-bs-4-maxep-6 |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 6.1788 |
|
- Rouge/rouge1: 0.3111 |
|
- Rouge/rouge2: 0.0793 |
|
- Rouge/rougel: 0.2212 |
|
- Rouge/rougelsum: 0.2213 |
|
- Bertscore/bertscore-precision: 0.8659 |
|
- Bertscore/bertscore-recall: 0.864 |
|
- Bertscore/bertscore-f1: 0.8649 |
|
- Meteor: 0.228 |
|
- Gen Len: 36.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| |
|
| 0.5854 | 1.0 | 217 | 5.7937 | 0.2578 | 0.0526 | 0.1861 | 0.1862 | 0.8466 | 0.8559 | 0.8512 | 0.265 | 55.0 | |
|
| 0.5363 | 2.0 | 434 | 5.9473 | 0.2723 | 0.0677 | 0.226 | 0.2265 | 0.8613 | 0.855 | 0.8581 | 0.2229 | 30.0 | |
|
| 0.4911 | 3.0 | 651 | 6.0403 | 0.3064 | 0.0749 | 0.2182 | 0.2185 | 0.865 | 0.8652 | 0.8651 | 0.2255 | 37.0 | |
|
| 0.4651 | 4.0 | 868 | 6.1046 | 0.3064 | 0.0749 | 0.2182 | 0.2185 | 0.865 | 0.8652 | 0.8651 | 0.2255 | 37.0 | |
|
| 0.4476 | 5.0 | 1085 | 6.1659 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | |
|
| 0.4415 | 6.0 | 1302 | 6.1788 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|