Edit model card

bart-abs-2409-1947-lr-0.0003-bs-4-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 7.1633
  • Rouge/rouge1: 0.2439
  • Rouge/rouge2: 0.0504
  • Rouge/rougel: 0.2065
  • Rouge/rougelsum: 0.2067
  • Bertscore/bertscore-precision: 0.8544
  • Bertscore/bertscore-recall: 0.8581
  • Bertscore/bertscore-f1: 0.8562
  • Meteor: 0.229
  • Gen Len: 45.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
3.3364 1.0 217 3.8952 0.2911 0.0832 0.2351 0.2361 0.8685 0.8711 0.8697 0.2279 43.0
2.369 2.0 434 4.0594 0.2603 0.0584 0.2204 0.2202 0.871 0.8545 0.8626 0.2129 35.0
1.4708 3.0 651 4.6061 0.2722 0.0714 0.2029 0.2031 0.8612 0.8618 0.8615 0.2582 45.0
0.9251 4.0 868 5.2239 0.2333 0.0475 0.1761 0.1762 0.8431 0.8562 0.8495 0.2342 58.8273
0.6367 5.0 1085 5.8193 0.2622 0.0744 0.2001 0.1997 0.8634 0.8616 0.8625 0.1982 32.0
0.486 6.0 1302 6.2975 0.2591 0.0557 0.2009 0.2012 0.859 0.8605 0.8597 0.2511 48.0091
0.3892 7.0 1519 6.5002 0.2582 0.0781 0.2156 0.2154 0.8771 0.8626 0.8697 0.1855 29.0
0.3152 8.0 1736 6.7352 0.313 0.0882 0.2413 0.2416 0.8789 0.8681 0.8735 0.2252 34.0
0.2751 9.0 1953 6.9970 0.2906 0.0847 0.2272 0.2274 0.8671 0.8567 0.8618 0.1991 27.0
0.24 10.0 2170 7.1633 0.2439 0.0504 0.2065 0.2067 0.8544 0.8581 0.8562 0.229 45.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
306M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for roequitz/bart-abs-2409-1947-lr-0.0003-bs-4-maxep-10

Finetuned
(43)
this model