roequitz's picture
End of training
cba704c verified
metadata
library_name: transformers
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-2409-1947-lr-3e-05-bs-8-maxep-10
    results: []

bart-abs-2409-1947-lr-3e-05-bs-8-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2084
  • Rouge/rouge1: 0.4731
  • Rouge/rouge2: 0.2204
  • Rouge/rougel: 0.4091
  • Rouge/rougelsum: 0.4105
  • Bertscore/bertscore-precision: 0.8963
  • Bertscore/bertscore-recall: 0.8954
  • Bertscore/bertscore-f1: 0.8957
  • Meteor: 0.4281
  • Gen Len: 38.3182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.0785 1.0 109 3.9838 0.4581 0.1987 0.3887 0.3892 0.8957 0.8906 0.893 0.4019 35.6455
0.0862 2.0 218 3.9075 0.4574 0.2028 0.3856 0.3863 0.8923 0.8918 0.8919 0.4091 39.1545
0.0792 3.0 327 3.9794 0.4593 0.1972 0.3807 0.3814 0.889 0.8926 0.8906 0.4145 41.9182
0.0673 4.0 436 4.0419 0.4634 0.2047 0.3928 0.3937 0.8948 0.8918 0.8931 0.4133 36.6909
0.0604 5.0 545 4.1048 0.4629 0.2112 0.396 0.3971 0.8956 0.8926 0.8939 0.4118 36.9727
0.0548 6.0 654 4.1331 0.4556 0.2042 0.3904 0.391 0.8938 0.8917 0.8926 0.4079 38.1545
0.0508 7.0 763 4.1740 0.4546 0.1949 0.383 0.3842 0.8925 0.8903 0.8913 0.4028 37.5273
0.0473 8.0 872 4.1643 0.4653 0.212 0.401 0.4026 0.8949 0.8939 0.8942 0.4212 38.4818
0.0438 9.0 981 4.1913 0.472 0.2155 0.4063 0.4071 0.8969 0.8947 0.8956 0.4223 37.9091
0.0401 10.0 1090 4.2084 0.4731 0.2204 0.4091 0.4105 0.8963 0.8954 0.8957 0.4281 38.3182

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1