|
--- |
|
license: other |
|
tags: |
|
- mergekit |
|
- merge |
|
base_model: |
|
- Qwen/Qwen2.5-3B |
|
- Qwen/Qwen2.5-3B-Instruct |
|
- arcee-ai/raspberry-3B |
|
license_name: qwen-research |
|
license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE |
|
model-index: |
|
- name: Rombos-LLM-V2.5.1-Qwen-3b |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 25.95 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 14.88 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 8.31 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 3.24 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 7.82 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 19.1 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rombodawg/Rombos-LLM-V2.5.1-Qwen-3b |
|
name: Open LLM Leaderboard |
|
--- |
|
# Rombos-LLM-V2.5.1-Qwen-3b |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/pNDtgE5FDkxxvbG4qiZ1A.jpeg) |
|
|
|
A little experiment I threw together to take a really high quality LLM I found (arcee-ai/raspberry-3B) and merge it using the last step of my Continuous Finetuning method outlines in the paper linked bellow. |
|
|
|
https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing |
|
|
|
Mergekit.yaml file is as follows: |
|
```yaml |
|
models: |
|
- model: Qwen2.5-3B-Instruct |
|
parameters: |
|
weight: 1 |
|
density: 1 |
|
- model: raspberry-3B |
|
parameters: |
|
weight: 1 |
|
density: 1 |
|
merge_method: ties |
|
base_model: Qwen2.5-3B |
|
parameters: |
|
weight: 1 |
|
density: 1 |
|
normalize: true |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Rombos-LLM-V2.5.1-Qwen-3b) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |13.22| |
|
|IFEval (0-Shot) |25.95| |
|
|BBH (3-Shot) |14.88| |
|
|MATH Lvl 5 (4-Shot)| 8.31| |
|
|GPQA (0-shot) | 3.24| |
|
|MuSR (0-shot) | 7.82| |
|
|MMLU-PRO (5-shot) |19.10| |
|
|
|
|