roshna-omer's picture
End of training
9cb41c1 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-krd-colab-CV16.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: ckb
          split: test
          args: ckb
        metrics:
          - name: Wer
            type: wer
            value: 0.23061901252763448

w2v-bert-2.0-krd-colab-CV16.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2704
  • Wer: 0.2306

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.283 0.7979 300 0.3271 0.3871
0.2931 1.5957 600 0.2957 0.3468
0.2358 2.3936 900 0.2746 0.3299
0.1842 3.1915 1200 0.2473 0.2846
0.1532 3.9894 1500 0.2257 0.2632
0.1198 4.7872 1800 0.2403 0.2600
0.1027 5.5851 2100 0.2239 0.2513
0.0837 6.3830 2400 0.2310 0.2591
0.0678 7.1809 2700 0.2295 0.2402
0.0527 7.9787 3000 0.2428 0.2334
0.0374 8.7766 3300 0.2448 0.2347
0.0298 9.5745 3600 0.2704 0.2306

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu118
  • Datasets 2.19.2
  • Tokenizers 0.19.1