Model_G_2 / README.md
rossevine's picture
update model card README.md
628c3c6
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: Model_G_2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.251258623904531

Model_G_2

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3710
  • Wer: 0.2513
  • Cer: 0.0631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.7484 3.23 400 0.5706 0.5698 0.1477
0.3419 6.45 800 0.4120 0.3758 0.0924
0.1796 9.68 1200 0.3691 0.3295 0.0843
0.125 12.9 1600 0.3821 0.3097 0.0782
0.0984 16.13 2000 0.4085 0.2947 0.0742
0.0827 19.35 2400 0.3859 0.2781 0.0711
0.0666 22.58 2800 0.3813 0.2663 0.0684
0.0558 25.81 3200 0.3681 0.2545 0.0644
0.0466 29.03 3600 0.3710 0.2513 0.0631

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 1.18.3
  • Tokenizers 0.13.3