ryan03282024
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the properties dataset. It achieves the following results on the evaluation set:
- Loss: 0.2238
- Ordinal Mae: 0.4441
- Ordinal Accuracy: 0.6446
- Na Accuracy: 0.7992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Ordinal Mae | Ordinal Accuracy | Na Accuracy |
---|---|---|---|---|---|---|
0.3421 | 0.04 | 100 | 0.3331 | 0.8749 | 0.3817 | 0.6911 |
0.2813 | 0.09 | 200 | 0.3000 | 0.7492 | 0.5117 | 0.7954 |
0.2619 | 0.13 | 300 | 0.3019 | 0.6841 | 0.5273 | 0.7046 |
0.2863 | 0.17 | 400 | 0.2960 | 0.6538 | 0.5097 | 0.7336 |
0.2159 | 0.22 | 500 | 0.2602 | 0.5404 | 0.5660 | 0.8243 |
0.2235 | 0.26 | 600 | 0.2557 | 0.5015 | 0.5874 | 0.7780 |
0.285 | 0.31 | 700 | 0.2564 | 0.5000 | 0.6180 | 0.6853 |
0.2028 | 0.35 | 800 | 0.2862 | 0.6338 | 0.5068 | 0.7220 |
0.2006 | 0.39 | 900 | 0.2495 | 0.4830 | 0.6299 | 0.7587 |
0.2663 | 0.44 | 1000 | 0.2660 | 0.4893 | 0.6021 | 0.8610 |
0.2062 | 0.48 | 1100 | 0.2481 | 0.4713 | 0.6267 | 0.8436 |
0.1749 | 0.52 | 1200 | 0.2586 | 0.4959 | 0.6423 | 0.6737 |
0.2197 | 0.57 | 1300 | 0.2349 | 0.4841 | 0.5981 | 0.8031 |
0.2073 | 0.61 | 1400 | 0.2587 | 0.4878 | 0.6013 | 0.6950 |
0.1915 | 0.66 | 1500 | 0.2393 | 0.4771 | 0.6322 | 0.7683 |
0.2374 | 0.7 | 1600 | 0.2238 | 0.4441 | 0.6446 | 0.7992 |
0.2278 | 0.74 | 1700 | 0.2453 | 0.4410 | 0.6539 | 0.7278 |
0.2033 | 0.79 | 1800 | 0.2251 | 0.4584 | 0.6299 | 0.8185 |
0.1843 | 0.83 | 1900 | 0.2280 | 0.4446 | 0.6513 | 0.8127 |
0.1878 | 0.87 | 2000 | 0.2277 | 0.4454 | 0.6492 | 0.8127 |
0.2608 | 0.92 | 2100 | 0.2309 | 0.4517 | 0.6192 | 0.8494 |
0.201 | 0.96 | 2200 | 0.2459 | 0.4654 | 0.6406 | 0.7278 |
0.1736 | 1.0 | 2300 | 0.2438 | 0.4474 | 0.6475 | 0.7201 |
0.1374 | 1.05 | 2400 | 0.2368 | 0.4145 | 0.6622 | 0.7799 |
0.1334 | 1.09 | 2500 | 0.2424 | 0.4105 | 0.6732 | 0.7510 |
0.1319 | 1.14 | 2600 | 0.2336 | 0.4155 | 0.6712 | 0.7741 |
0.1549 | 1.18 | 2700 | 0.2525 | 0.4040 | 0.6625 | 0.7587 |
0.116 | 1.22 | 2800 | 0.2501 | 0.4425 | 0.6371 | 0.7664 |
0.1358 | 1.27 | 2900 | 0.2324 | 0.4136 | 0.6498 | 0.8185 |
0.1614 | 1.31 | 3000 | 0.2637 | 0.4353 | 0.6316 | 0.7915 |
0.1395 | 1.35 | 3100 | 0.2446 | 0.4020 | 0.6726 | 0.8012 |
0.1208 | 1.4 | 3200 | 0.2465 | 0.3946 | 0.6764 | 0.8243 |
0.1432 | 1.44 | 3300 | 0.2552 | 0.3919 | 0.6576 | 0.8900 |
0.1358 | 1.48 | 3400 | 0.2561 | 0.3984 | 0.6796 | 0.7896 |
0.0877 | 1.53 | 3500 | 0.2381 | 0.3901 | 0.6822 | 0.7876 |
0.1212 | 1.57 | 3600 | 0.2600 | 0.4001 | 0.6949 | 0.7259 |
0.1917 | 1.62 | 3700 | 0.2459 | 0.3889 | 0.6894 | 0.7819 |
0.1175 | 1.66 | 3800 | 0.2444 | 0.3937 | 0.6819 | 0.7741 |
0.1522 | 1.7 | 3900 | 0.2473 | 0.4010 | 0.6608 | 0.8050 |
0.1027 | 1.75 | 4000 | 0.2354 | 0.4208 | 0.6478 | 0.7838 |
0.1343 | 1.79 | 4100 | 0.2284 | 0.3977 | 0.6744 | 0.7992 |
0.1552 | 1.83 | 4200 | 0.2607 | 0.4045 | 0.6715 | 0.7780 |
0.1172 | 1.88 | 4300 | 0.2421 | 0.3971 | 0.6666 | 0.8282 |
0.1381 | 1.92 | 4400 | 0.2253 | 0.3813 | 0.6793 | 0.7857 |
0.1282 | 1.97 | 4500 | 0.2335 | 0.4146 | 0.6510 | 0.8436 |
0.0734 | 2.01 | 4600 | 0.2382 | 0.3802 | 0.6897 | 0.7896 |
0.1046 | 2.05 | 4700 | 0.2358 | 0.3695 | 0.6874 | 0.8012 |
0.0529 | 2.1 | 4800 | 0.2463 | 0.3596 | 0.7096 | 0.7934 |
0.0687 | 2.14 | 4900 | 0.2615 | 0.3921 | 0.6738 | 0.7857 |
0.0613 | 2.18 | 5000 | 0.2543 | 0.3651 | 0.6877 | 0.8108 |
0.0591 | 2.23 | 5100 | 0.2539 | 0.3693 | 0.6885 | 0.7915 |
0.0474 | 2.27 | 5200 | 0.2650 | 0.3722 | 0.6836 | 0.7992 |
0.0511 | 2.31 | 5300 | 0.2631 | 0.3681 | 0.6868 | 0.8127 |
0.0683 | 2.36 | 5400 | 0.2714 | 0.3630 | 0.6955 | 0.7838 |
0.0654 | 2.4 | 5500 | 0.2769 | 0.3673 | 0.6787 | 0.7992 |
0.0581 | 2.45 | 5600 | 0.2777 | 0.3628 | 0.6952 | 0.7992 |
0.072 | 2.49 | 5700 | 0.2919 | 0.3610 | 0.6888 | 0.7683 |
0.0737 | 2.53 | 5800 | 0.2807 | 0.3612 | 0.6984 | 0.7838 |
0.0667 | 2.58 | 5900 | 0.2926 | 0.3607 | 0.7001 | 0.7510 |
0.0669 | 2.62 | 6000 | 0.2875 | 0.3616 | 0.6891 | 0.7992 |
0.0535 | 2.66 | 6100 | 0.2854 | 0.3565 | 0.6960 | 0.7683 |
0.06 | 2.71 | 6200 | 0.2847 | 0.3501 | 0.7015 | 0.7741 |
0.0534 | 2.75 | 6300 | 0.2821 | 0.3495 | 0.7007 | 0.7625 |
0.0526 | 2.79 | 6400 | 0.2834 | 0.3853 | 0.6700 | 0.7625 |
0.0841 | 2.84 | 6500 | 0.2839 | 0.3504 | 0.7044 | 0.7490 |
0.0529 | 2.88 | 6600 | 0.2858 | 0.3595 | 0.6897 | 0.7819 |
0.0811 | 2.93 | 6700 | 0.2843 | 0.3480 | 0.7047 | 0.7799 |
0.0502 | 2.97 | 6800 | 0.2892 | 0.3483 | 0.7010 | 0.7819 |
0.0273 | 3.01 | 6900 | 0.2801 | 0.3454 | 0.6958 | 0.8108 |
0.0306 | 3.06 | 7000 | 0.2782 | 0.3444 | 0.7024 | 0.8031 |
0.0257 | 3.1 | 7100 | 0.2797 | 0.3352 | 0.7085 | 0.7934 |
0.0241 | 3.14 | 7200 | 0.2828 | 0.3343 | 0.7059 | 0.7954 |
0.0255 | 3.19 | 7300 | 0.2890 | 0.3364 | 0.6981 | 0.8050 |
0.0245 | 3.23 | 7400 | 0.2906 | 0.3392 | 0.7044 | 0.7992 |
0.0232 | 3.28 | 7500 | 0.2891 | 0.3338 | 0.7036 | 0.7857 |
0.0352 | 3.32 | 7600 | 0.2908 | 0.3443 | 0.6926 | 0.7896 |
0.0376 | 3.36 | 7700 | 0.2877 | 0.3315 | 0.7050 | 0.7915 |
0.025 | 3.41 | 7800 | 0.2889 | 0.3316 | 0.7076 | 0.7896 |
0.0225 | 3.45 | 7900 | 0.2902 | 0.3286 | 0.7070 | 0.7819 |
0.024 | 3.49 | 8000 | 0.2902 | 0.3270 | 0.7102 | 0.7954 |
0.0404 | 3.54 | 8100 | 0.2950 | 0.3294 | 0.7053 | 0.7896 |
0.0221 | 3.58 | 8200 | 0.2924 | 0.3271 | 0.7093 | 0.7934 |
0.0182 | 3.62 | 8300 | 0.2921 | 0.3237 | 0.7105 | 0.7934 |
0.0304 | 3.67 | 8400 | 0.2911 | 0.3231 | 0.7134 | 0.7857 |
0.0193 | 3.71 | 8500 | 0.2915 | 0.3221 | 0.7166 | 0.7838 |
0.0223 | 3.76 | 8600 | 0.2931 | 0.3235 | 0.7122 | 0.7896 |
0.0254 | 3.8 | 8700 | 0.2947 | 0.3214 | 0.7174 | 0.7876 |
0.0215 | 3.84 | 8800 | 0.2936 | 0.3202 | 0.7128 | 0.7857 |
0.0312 | 3.89 | 8900 | 0.2956 | 0.3210 | 0.7134 | 0.7857 |
0.0189 | 3.93 | 9000 | 0.2946 | 0.3210 | 0.7125 | 0.7876 |
0.021 | 3.97 | 9100 | 0.2949 | 0.3194 | 0.7145 | 0.7876 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rshrott/ryan03282024
Base model
google/vit-base-patch16-224-in21k