metadata
license: gpl-3.0
tags:
- DocVQA
- Document Question Answering
- Document Visual Question Answering
datasets:
- rubentito/mp-docvqa
language:
- en
T5 base fine-tuned on MP-DocVQA
This is pretrained T5 base fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
This model was used as a baseline in Hierarchical multimodal transformers for Multi-Page DocVQA.
- Results on the MP-DocVQA dataset are reported in Table 2.
- Training hyperparameters can be found in Table 8 of Appendix D.
How to use
Here is how to use this model to get the features of a given text in PyTorch:
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = LongformerTokenizerFast.from_pretrained("rubentito/t5-base-mpdocvqa")
model = LongformerForQuestionAnswering.from_pretrained("rubentito/t5-base-mpdocvqa")
context = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done?"
input_text = "question: {:s} context: {:s}".format(question, context)
encoding = tokenizer(input_text, return_tensors="pt")
output = self.model.generate(**encoding)
answer = tokenizer.decode(output['sequences'], skip_special_tokens=True)
Model results
Extended experimentation can be found in Table 2 of Hierarchical multimodal transformers for Multi-Page DocVQA. You can also check the live leaderboard at the RRC Portal.
Model | HF name | Parameters | ANLS | APPA |
---|---|---|---|---|
Bert large | rubentito/bert-large-mpdocvqa | 334M | 0.4183 | 51.6177 |
Longformer base | rubentito/longformer-base-mpdocvqa | 148M | 0.5287 | 71.1696 |
BigBird ITC base | rubentito/bigbird-base-itc-mpdocvqa | 131M | 0.4929 | 67.5433 |
LayoutLMv3 base | rubentito/layoutlmv3-base-mpdocvqa | 125M | 0.4538 | 51.9426 |
T5 base | rubentito/t5-base-mpdocvqa | 223M | 0.5050 | 0.0000 |
Hi-VT5 | TBA | 316M | 0.6201 | 79.23 |
Citation Information
@article{tito2022hierarchical,
title={Hierarchical multimodal transformers for Multi-Page DocVQA},
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
journal={arXiv preprint arXiv:2212.05935},
year={2022}
}