LED_billsum_model / README.md
ruchita1010's picture
End of training
739e122
metadata
license: apache-2.0
base_model: allenai/led-base-16384
tags:
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
model-index:
  - name: LED_billsum_model
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: billsum
          type: billsum
          config: default
          split: ca_test
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.1447

LED_billsum_model

This model is a fine-tuned version of allenai/led-base-16384 on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6576
  • Rouge1: 0.1447
  • Rouge2: 0.0854
  • Rougel: 0.1292
  • Rougelsum: 0.1339
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.4849 1.0 330 1.6511 0.1463 0.0827 0.1276 0.1337 20.0
1.3361 2.0 660 1.6056 0.148 0.0799 0.1268 0.1336 20.0
1.1727 3.0 990 1.5833 0.1459 0.0827 0.1289 0.1341 20.0
1.0601 4.0 1320 1.5987 0.1462 0.0859 0.1299 0.1344 20.0
0.9789 5.0 1650 1.6030 0.1414 0.0794 0.125 0.1302 20.0
0.8724 6.0 1980 1.6060 0.1476 0.0868 0.1298 0.1356 20.0
0.7994 7.0 2310 1.6295 0.1348 0.0758 0.1198 0.1253 20.0
0.7762 8.0 2640 1.6317 0.1422 0.0831 0.1261 0.1312 20.0
0.7087 9.0 2970 1.6501 0.1421 0.0825 0.1264 0.1311 20.0
0.7014 10.0 3300 1.6576 0.1447 0.0854 0.1292 0.1339 20.0

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1