Edit model card

hubert-base-ls960-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4867
  • Accuracy: 0.89

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2324 1.0 45 2.1551 0.32
1.858 2.0 90 1.7637 0.43
1.6808 3.0 135 1.5373 0.5
1.4424 4.0 180 1.3738 0.59
1.2715 5.0 225 1.1840 0.61
1.1501 6.0 270 1.0517 0.63
1.0187 7.0 315 0.8796 0.72
0.9446 8.0 360 0.8616 0.66
0.9266 9.0 405 0.8598 0.68
0.7204 10.0 450 0.7464 0.72
0.5817 11.0 495 0.7511 0.79
0.6758 12.0 540 0.8287 0.75
0.5383 13.0 585 0.6391 0.8
0.659 14.0 630 0.5670 0.84
0.4272 15.0 675 0.6181 0.85
0.4661 16.0 720 0.4935 0.86
0.4798 17.0 765 0.5827 0.85
0.3895 18.0 810 0.4870 0.88
0.3039 19.0 855 0.4571 0.9
0.2401 20.0 900 0.4867 0.89

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0+cu117
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
9
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for s-xiao/hubert-base-ls960-finetuned-gtzan

Finetuned
(67)
this model

Dataset used to train s-xiao/hubert-base-ls960-finetuned-gtzan

Evaluation results