Update README.md
Browse files
README.md
CHANGED
@@ -33,9 +33,9 @@ widget:
|
|
33 |
- divsepwid
|
34 |
- 'single '
|
35 |
MORTGAGE:
|
36 |
-
- y
|
37 |
-
- y
|
38 |
-
- n
|
39 |
NUMCARDS:
|
40 |
- 2
|
41 |
- 6
|
@@ -48,11 +48,14 @@ widget:
|
|
48 |
- 3
|
49 |
- 5
|
50 |
- 2
|
|
|
|
|
51 |
---
|
52 |
|
53 |
# Model description
|
54 |
|
55 |
-
|
|
|
56 |
|
57 |
## Intended uses & limitations
|
58 |
|
@@ -60,7 +63,12 @@ widget:
|
|
60 |
|
61 |
## Training Procedure
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
### Hyperparameters
|
66 |
|
@@ -117,6 +125,9 @@ widget:
|
|
117 |
<style>#sk-container-id-16 {color: black;background-color: white;}#sk-container-id-16 pre{padding: 0;}#sk-container-id-16 div.sk-toggleable {background-color: white;}#sk-container-id-16 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-16 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-16 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-16 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-16 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-16 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-16 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-16 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-16 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-16 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-16 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-16 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-16 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-16 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-16 div.sk-item {position: relative;z-index: 1;}#sk-container-id-16 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-16 div.sk-item::before, #sk-container-id-16 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-16 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-16 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-16 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-16 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-16 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-16 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-16 div.sk-label-container {text-align: center;}#sk-container-id-16 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-16 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-16" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore'))]),['GENDER', 'MARITAL','HOWPAID', 'MORTGAGE'])])),('classifier', LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-106" type="checkbox" ><label for="sk-estimator-id-106" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore'))]),['GENDER', 'MARITAL','HOWPAID', 'MORTGAGE'])])),('classifier', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-107" type="checkbox" ><label for="sk-estimator-id-107" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore'))]),['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-108" type="checkbox" ><label for="sk-estimator-id-108" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-109" type="checkbox" ><label for="sk-estimator-id-109" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore')</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-110" type="checkbox" ><label for="sk-estimator-id-110" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>['AGE', 'INCOME', 'NUMKIDS', 'NUMCARDS', 'STORECAR', 'LOANS']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-111" type="checkbox" ><label for="sk-estimator-id-111" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-112" type="checkbox" ><label for="sk-estimator-id-112" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
|
118 |
|
119 |
## Evaluation Results
|
|
|
|
|
|
|
120 |
|
121 |
| Metric | Value |
|
122 |
|-----------|----------|
|
@@ -134,14 +145,12 @@ widget:
|
|
134 |
|
135 |
# Model Card Authors
|
136 |
|
137 |
-
This model card is written by following authors:
|
138 |
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
# Model Card Contact
|
142 |
|
143 |
-
You can contact the model card authors through following channels:
|
144 |
-
[More Information Needed]
|
145 |
|
146 |
# Citation
|
147 |
|
@@ -150,4 +159,4 @@ Below you can find information related to citation.
|
|
150 |
**BibTeX:**
|
151 |
```
|
152 |
[More Information Needed]
|
153 |
-
```
|
|
|
33 |
- divsepwid
|
34 |
- 'single '
|
35 |
MORTGAGE:
|
36 |
+
- 'y'
|
37 |
+
- 'y'
|
38 |
+
- 'n'
|
39 |
NUMCARDS:
|
40 |
- 2
|
41 |
- 6
|
|
|
48 |
- 3
|
49 |
- 5
|
50 |
- 2
|
51 |
+
datasets:
|
52 |
+
- saifhmb/CreditCardRisk
|
53 |
---
|
54 |
|
55 |
# Model description
|
56 |
|
57 |
+
This is a logistic regression model trained on customers' credit card risk data in a bank using sklearn library.
|
58 |
+
The model predicts whether a customer is worth issuing a credit card or not. The full dataset can be viewed at the following link: https://huggingface.co/datasets/saifhmb/CreditCardRisk
|
59 |
|
60 |
## Intended uses & limitations
|
61 |
|
|
|
63 |
|
64 |
## Training Procedure
|
65 |
|
66 |
+
The data preprocessing steps applied include the following:
|
67 |
+
- Dropping high cardinality features, specifically ID
|
68 |
+
- Transforming and Encoding categorical features namely: GENDER, MARITAL, HOWPAID, MORTGAGE and the target variable, RISK
|
69 |
+
- Splitting the dataset into training/test set using 85/15 split ratio
|
70 |
+
- Applying feature scaling on all features
|
71 |
+
|
72 |
|
73 |
### Hyperparameters
|
74 |
|
|
|
125 |
<style>#sk-container-id-16 {color: black;background-color: white;}#sk-container-id-16 pre{padding: 0;}#sk-container-id-16 div.sk-toggleable {background-color: white;}#sk-container-id-16 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-16 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-16 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-16 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-16 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-16 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-16 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-16 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-16 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-16 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-16 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-16 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-16 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-16 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-16 div.sk-item {position: relative;z-index: 1;}#sk-container-id-16 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-16 div.sk-item::before, #sk-container-id-16 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-16 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-16 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-16 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-16 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-16 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-16 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-16 div.sk-label-container {text-align: center;}#sk-container-id-16 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-16 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-16" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore'))]),['GENDER', 'MARITAL','HOWPAID', 'MORTGAGE'])])),('classifier', LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-106" type="checkbox" ><label for="sk-estimator-id-106" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore'))]),['GENDER', 'MARITAL','HOWPAID', 'MORTGAGE'])])),('classifier', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-107" type="checkbox" ><label for="sk-estimator-id-107" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore'))]),['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-108" type="checkbox" ><label for="sk-estimator-id-108" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-109" type="checkbox" ><label for="sk-estimator-id-109" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore')</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-110" type="checkbox" ><label for="sk-estimator-id-110" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>['AGE', 'INCOME', 'NUMKIDS', 'NUMCARDS', 'STORECAR', 'LOANS']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-111" type="checkbox" ><label for="sk-estimator-id-111" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-112" type="checkbox" ><label for="sk-estimator-id-112" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
|
126 |
|
127 |
## Evaluation Results
|
128 |
+
- The target variable, RISK is multiclass. In sklearn, precision and recall functions have a parameter called,
|
129 |
+
average. This parameter is required for a multiclass/multilabel target. average = 'micro' was used to calculate
|
130 |
+
the precision and recall metrics globally by counting the total true positives, false negatives and false positives
|
131 |
|
132 |
| Metric | Value |
|
133 |
|-----------|----------|
|
|
|
145 |
|
146 |
# Model Card Authors
|
147 |
|
148 |
+
This model card is written by following authors: Seifullah Bello
|
149 |
|
|
|
150 |
|
151 |
# Model Card Contact
|
152 |
|
153 |
+
You can contact the model card authors through following channels: [email protected]
|
|
|
154 |
|
155 |
# Citation
|
156 |
|
|
|
159 |
**BibTeX:**
|
160 |
```
|
161 |
[More Information Needed]
|
162 |
+
```
|