metadata
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert_baseline_language_task3_fold1
results: []
bert_baseline_language_task3_fold1
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3495
- Qwk: 0.7465
- Mse: 0.3495
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0308 | 2 | 0.9241 | 0.0973 | 0.9241 |
No log | 0.0615 | 4 | 0.7692 | 0.0172 | 0.7692 |
No log | 0.0923 | 6 | 0.6906 | 0.0 | 0.6906 |
No log | 0.1231 | 8 | 0.6645 | 0.0 | 0.6645 |
No log | 0.1538 | 10 | 0.6742 | 0.0 | 0.6742 |
No log | 0.1846 | 12 | 0.6600 | 0.0097 | 0.6600 |
No log | 0.2154 | 14 | 0.6105 | 0.1283 | 0.6105 |
No log | 0.2462 | 16 | 0.5742 | 0.0989 | 0.5742 |
No log | 0.2769 | 18 | 0.5379 | 0.2188 | 0.5379 |
No log | 0.3077 | 20 | 0.5496 | 0.3968 | 0.5496 |
No log | 0.3385 | 22 | 0.5728 | 0.4810 | 0.5728 |
No log | 0.3692 | 24 | 0.4980 | 0.5887 | 0.4980 |
No log | 0.4 | 26 | 0.4483 | 0.5874 | 0.4483 |
No log | 0.4308 | 28 | 0.4423 | 0.5669 | 0.4423 |
No log | 0.4615 | 30 | 0.4260 | 0.5824 | 0.4260 |
No log | 0.4923 | 32 | 0.4285 | 0.6024 | 0.4285 |
No log | 0.5231 | 34 | 0.4691 | 0.6564 | 0.4691 |
No log | 0.5538 | 36 | 0.4531 | 0.6363 | 0.4531 |
No log | 0.5846 | 38 | 0.4242 | 0.5254 | 0.4242 |
No log | 0.6154 | 40 | 0.4281 | 0.3450 | 0.4281 |
No log | 0.6462 | 42 | 0.4759 | 0.3197 | 0.4759 |
No log | 0.6769 | 44 | 0.5171 | 0.3390 | 0.5171 |
No log | 0.7077 | 46 | 0.4740 | 0.3374 | 0.4740 |
No log | 0.7385 | 48 | 0.4149 | 0.3145 | 0.4149 |
No log | 0.7692 | 50 | 0.4579 | 0.6005 | 0.4579 |
No log | 0.8 | 52 | 0.5321 | 0.6699 | 0.5321 |
No log | 0.8308 | 54 | 0.5278 | 0.6732 | 0.5278 |
No log | 0.8615 | 56 | 0.4365 | 0.6723 | 0.4365 |
No log | 0.8923 | 58 | 0.3708 | 0.5577 | 0.3708 |
No log | 0.9231 | 60 | 0.3647 | 0.4893 | 0.3647 |
No log | 0.9538 | 62 | 0.3586 | 0.5214 | 0.3586 |
No log | 0.9846 | 64 | 0.3454 | 0.5466 | 0.3454 |
No log | 1.0154 | 66 | 0.3349 | 0.6349 | 0.3349 |
No log | 1.0462 | 68 | 0.3784 | 0.6895 | 0.3784 |
No log | 1.0769 | 70 | 0.3880 | 0.6963 | 0.3880 |
No log | 1.1077 | 72 | 0.3685 | 0.6724 | 0.3685 |
No log | 1.1385 | 74 | 0.3318 | 0.6633 | 0.3318 |
No log | 1.1692 | 76 | 0.3129 | 0.5935 | 0.3129 |
No log | 1.2 | 78 | 0.3051 | 0.6429 | 0.3051 |
No log | 1.2308 | 80 | 0.3128 | 0.6913 | 0.3128 |
No log | 1.2615 | 82 | 0.4495 | 0.7299 | 0.4495 |
No log | 1.2923 | 84 | 0.6028 | 0.7010 | 0.6028 |
No log | 1.3231 | 86 | 0.4935 | 0.7148 | 0.4935 |
No log | 1.3538 | 88 | 0.3399 | 0.6230 | 0.3399 |
No log | 1.3846 | 90 | 0.3273 | 0.5044 | 0.3273 |
No log | 1.4154 | 92 | 0.3266 | 0.4930 | 0.3266 |
No log | 1.4462 | 94 | 0.3575 | 0.6291 | 0.3575 |
No log | 1.4769 | 96 | 0.4728 | 0.7079 | 0.4728 |
No log | 1.5077 | 98 | 0.5130 | 0.7288 | 0.5130 |
No log | 1.5385 | 100 | 0.4588 | 0.7313 | 0.4588 |
No log | 1.5692 | 102 | 0.3353 | 0.7112 | 0.3353 |
No log | 1.6 | 104 | 0.2876 | 0.5570 | 0.2876 |
No log | 1.6308 | 106 | 0.3135 | 0.4982 | 0.3135 |
No log | 1.6615 | 108 | 0.2884 | 0.5642 | 0.2884 |
No log | 1.6923 | 110 | 0.3044 | 0.7035 | 0.3044 |
No log | 1.7231 | 112 | 0.3390 | 0.7189 | 0.3390 |
No log | 1.7538 | 114 | 0.3387 | 0.7189 | 0.3387 |
No log | 1.7846 | 116 | 0.3060 | 0.7181 | 0.3060 |
No log | 1.8154 | 118 | 0.2881 | 0.6756 | 0.2881 |
No log | 1.8462 | 120 | 0.2881 | 0.6663 | 0.2881 |
No log | 1.8769 | 122 | 0.3084 | 0.6906 | 0.3084 |
No log | 1.9077 | 124 | 0.3555 | 0.7381 | 0.3555 |
No log | 1.9385 | 126 | 0.3414 | 0.7463 | 0.3414 |
No log | 1.9692 | 128 | 0.2947 | 0.6779 | 0.2947 |
No log | 2.0 | 130 | 0.2831 | 0.5537 | 0.2831 |
No log | 2.0308 | 132 | 0.2853 | 0.5515 | 0.2853 |
No log | 2.0615 | 134 | 0.2808 | 0.6274 | 0.2808 |
No log | 2.0923 | 136 | 0.2888 | 0.6663 | 0.2888 |
No log | 2.1231 | 138 | 0.2990 | 0.6887 | 0.2990 |
No log | 2.1538 | 140 | 0.3005 | 0.6804 | 0.3005 |
No log | 2.1846 | 142 | 0.2969 | 0.6593 | 0.2969 |
No log | 2.2154 | 144 | 0.3092 | 0.6859 | 0.3092 |
No log | 2.2462 | 146 | 0.3575 | 0.7172 | 0.3575 |
No log | 2.2769 | 148 | 0.5047 | 0.7428 | 0.5047 |
No log | 2.3077 | 150 | 0.5975 | 0.7277 | 0.5975 |
No log | 2.3385 | 152 | 0.5210 | 0.7478 | 0.5210 |
No log | 2.3692 | 154 | 0.3886 | 0.7241 | 0.3886 |
No log | 2.4 | 156 | 0.3019 | 0.6758 | 0.3019 |
No log | 2.4308 | 158 | 0.2917 | 0.6260 | 0.2917 |
No log | 2.4615 | 160 | 0.3031 | 0.6687 | 0.3031 |
No log | 2.4923 | 162 | 0.3197 | 0.6870 | 0.3197 |
No log | 2.5231 | 164 | 0.3623 | 0.7384 | 0.3623 |
No log | 2.5538 | 166 | 0.3509 | 0.7409 | 0.3509 |
No log | 2.5846 | 168 | 0.3104 | 0.7006 | 0.3104 |
No log | 2.6154 | 170 | 0.2990 | 0.6717 | 0.2990 |
No log | 2.6462 | 172 | 0.3004 | 0.6883 | 0.3004 |
No log | 2.6769 | 174 | 0.3242 | 0.7166 | 0.3242 |
No log | 2.7077 | 176 | 0.3344 | 0.7123 | 0.3344 |
No log | 2.7385 | 178 | 0.3443 | 0.7146 | 0.3443 |
No log | 2.7692 | 180 | 0.3725 | 0.7165 | 0.3725 |
No log | 2.8 | 182 | 0.3582 | 0.7229 | 0.3582 |
No log | 2.8308 | 184 | 0.3007 | 0.6950 | 0.3007 |
No log | 2.8615 | 186 | 0.2832 | 0.6327 | 0.2832 |
No log | 2.8923 | 188 | 0.2833 | 0.6634 | 0.2833 |
No log | 2.9231 | 190 | 0.3170 | 0.7161 | 0.3170 |
No log | 2.9538 | 192 | 0.3658 | 0.7354 | 0.3658 |
No log | 2.9846 | 194 | 0.4421 | 0.7460 | 0.4421 |
No log | 3.0154 | 196 | 0.4628 | 0.7556 | 0.4628 |
No log | 3.0462 | 198 | 0.4077 | 0.7401 | 0.4077 |
No log | 3.0769 | 200 | 0.3241 | 0.7265 | 0.3241 |
No log | 3.1077 | 202 | 0.2805 | 0.6529 | 0.2805 |
No log | 3.1385 | 204 | 0.2775 | 0.6296 | 0.2775 |
No log | 3.1692 | 206 | 0.2868 | 0.6576 | 0.2868 |
No log | 3.2 | 208 | 0.3327 | 0.7343 | 0.3327 |
No log | 3.2308 | 210 | 0.3808 | 0.7450 | 0.3808 |
No log | 3.2615 | 212 | 0.3902 | 0.7446 | 0.3902 |
No log | 3.2923 | 214 | 0.3556 | 0.7431 | 0.3556 |
No log | 3.3231 | 216 | 0.3444 | 0.7378 | 0.3444 |
No log | 3.3538 | 218 | 0.3067 | 0.7044 | 0.3067 |
No log | 3.3846 | 220 | 0.2869 | 0.6498 | 0.2869 |
No log | 3.4154 | 222 | 0.2910 | 0.6745 | 0.2910 |
No log | 3.4462 | 224 | 0.3184 | 0.7196 | 0.3184 |
No log | 3.4769 | 226 | 0.3408 | 0.7263 | 0.3408 |
No log | 3.5077 | 228 | 0.3229 | 0.7265 | 0.3229 |
No log | 3.5385 | 230 | 0.3237 | 0.7234 | 0.3237 |
No log | 3.5692 | 232 | 0.3386 | 0.7248 | 0.3386 |
No log | 3.6 | 234 | 0.3175 | 0.7088 | 0.3175 |
No log | 3.6308 | 236 | 0.3032 | 0.6863 | 0.3032 |
No log | 3.6615 | 238 | 0.3059 | 0.6853 | 0.3059 |
No log | 3.6923 | 240 | 0.3283 | 0.7173 | 0.3283 |
No log | 3.7231 | 242 | 0.3330 | 0.7226 | 0.3330 |
No log | 3.7538 | 244 | 0.3505 | 0.7378 | 0.3505 |
No log | 3.7846 | 246 | 0.3617 | 0.7467 | 0.3617 |
No log | 3.8154 | 248 | 0.3791 | 0.7474 | 0.3791 |
No log | 3.8462 | 250 | 0.3584 | 0.7476 | 0.3584 |
No log | 3.8769 | 252 | 0.3236 | 0.7291 | 0.3236 |
No log | 3.9077 | 254 | 0.3140 | 0.7169 | 0.3140 |
No log | 3.9385 | 256 | 0.3216 | 0.7300 | 0.3216 |
No log | 3.9692 | 258 | 0.3348 | 0.7316 | 0.3348 |
No log | 4.0 | 260 | 0.3488 | 0.7524 | 0.3488 |
No log | 4.0308 | 262 | 0.3508 | 0.7556 | 0.3508 |
No log | 4.0615 | 264 | 0.3401 | 0.7409 | 0.3401 |
No log | 4.0923 | 266 | 0.3341 | 0.7408 | 0.3341 |
No log | 4.1231 | 268 | 0.3301 | 0.7397 | 0.3301 |
No log | 4.1538 | 270 | 0.3245 | 0.7386 | 0.3245 |
No log | 4.1846 | 272 | 0.3197 | 0.7314 | 0.3197 |
No log | 4.2154 | 274 | 0.3080 | 0.7152 | 0.3080 |
No log | 4.2462 | 276 | 0.2973 | 0.6889 | 0.2973 |
No log | 4.2769 | 278 | 0.2955 | 0.6828 | 0.2955 |
No log | 4.3077 | 280 | 0.3032 | 0.7075 | 0.3032 |
No log | 4.3385 | 282 | 0.3200 | 0.7297 | 0.3200 |
No log | 4.3692 | 284 | 0.3547 | 0.7527 | 0.3547 |
No log | 4.4 | 286 | 0.3780 | 0.7524 | 0.3780 |
No log | 4.4308 | 288 | 0.3775 | 0.7532 | 0.3775 |
No log | 4.4615 | 290 | 0.3563 | 0.7478 | 0.3563 |
No log | 4.4923 | 292 | 0.3411 | 0.7414 | 0.3411 |
No log | 4.5231 | 294 | 0.3259 | 0.7389 | 0.3259 |
No log | 4.5538 | 296 | 0.3079 | 0.7092 | 0.3079 |
No log | 4.5846 | 298 | 0.2988 | 0.6886 | 0.2988 |
No log | 4.6154 | 300 | 0.2977 | 0.6884 | 0.2977 |
No log | 4.6462 | 302 | 0.3039 | 0.6961 | 0.3039 |
No log | 4.6769 | 304 | 0.3155 | 0.7221 | 0.3155 |
No log | 4.7077 | 306 | 0.3336 | 0.7411 | 0.3336 |
No log | 4.7385 | 308 | 0.3505 | 0.7475 | 0.3505 |
No log | 4.7692 | 310 | 0.3624 | 0.7538 | 0.3624 |
No log | 4.8 | 312 | 0.3655 | 0.7510 | 0.3655 |
No log | 4.8308 | 314 | 0.3611 | 0.7510 | 0.3611 |
No log | 4.8615 | 316 | 0.3557 | 0.7507 | 0.3557 |
No log | 4.8923 | 318 | 0.3523 | 0.7467 | 0.3523 |
No log | 4.9231 | 320 | 0.3497 | 0.7465 | 0.3497 |
No log | 4.9538 | 322 | 0.3499 | 0.7465 | 0.3499 |
No log | 4.9846 | 324 | 0.3495 | 0.7465 | 0.3495 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1