metadata
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert_baseline_language_task3_fold2
results: []
bert_baseline_language_task3_fold2
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4310
- Qwk: 0.6497
- Mse: 0.4312
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0308 | 2 | 0.8667 | 0.1286 | 0.8665 |
No log | 0.0615 | 4 | 0.6721 | 0.0 | 0.6724 |
No log | 0.0923 | 6 | 0.5799 | 0.0 | 0.5808 |
No log | 0.1231 | 8 | 0.5723 | 0.0 | 0.5735 |
No log | 0.1538 | 10 | 0.5882 | 0.0 | 0.5895 |
No log | 0.1846 | 12 | 0.7119 | -0.0229 | 0.7129 |
No log | 0.2154 | 14 | 0.5587 | 0.0032 | 0.5596 |
No log | 0.2462 | 16 | 0.5222 | 0.0 | 0.5229 |
No log | 0.2769 | 18 | 0.5158 | 0.0 | 0.5165 |
No log | 0.3077 | 20 | 0.4875 | 0.0 | 0.4881 |
No log | 0.3385 | 22 | 0.4688 | 0.0096 | 0.4693 |
No log | 0.3692 | 24 | 0.4535 | 0.0190 | 0.4541 |
No log | 0.4 | 26 | 0.4426 | 0.0553 | 0.4432 |
No log | 0.4308 | 28 | 0.4235 | 0.1569 | 0.4238 |
No log | 0.4615 | 30 | 0.4035 | 0.2237 | 0.4036 |
No log | 0.4923 | 32 | 0.3861 | 0.3251 | 0.3860 |
No log | 0.5231 | 34 | 0.3859 | 0.3924 | 0.3856 |
No log | 0.5538 | 36 | 0.4097 | 0.3681 | 0.4092 |
No log | 0.5846 | 38 | 0.3858 | 0.4320 | 0.3853 |
No log | 0.6154 | 40 | 0.3829 | 0.5218 | 0.3826 |
No log | 0.6462 | 42 | 0.4023 | 0.5843 | 0.4021 |
No log | 0.6769 | 44 | 0.3627 | 0.5516 | 0.3623 |
No log | 0.7077 | 46 | 0.3448 | 0.5242 | 0.3445 |
No log | 0.7385 | 48 | 0.3390 | 0.5750 | 0.3387 |
No log | 0.7692 | 50 | 0.3549 | 0.6159 | 0.3548 |
No log | 0.8 | 52 | 0.3917 | 0.6282 | 0.3917 |
No log | 0.8308 | 54 | 0.4120 | 0.6185 | 0.4122 |
No log | 0.8615 | 56 | 0.3578 | 0.5993 | 0.3579 |
No log | 0.8923 | 58 | 0.3245 | 0.5054 | 0.3244 |
No log | 0.9231 | 60 | 0.3458 | 0.5575 | 0.3458 |
No log | 0.9538 | 62 | 0.4763 | 0.6243 | 0.4766 |
No log | 0.9846 | 64 | 0.4953 | 0.6201 | 0.4955 |
No log | 1.0154 | 66 | 0.3697 | 0.5996 | 0.3697 |
No log | 1.0462 | 68 | 0.3512 | 0.5810 | 0.3512 |
No log | 1.0769 | 70 | 0.3414 | 0.5767 | 0.3413 |
No log | 1.1077 | 72 | 0.3922 | 0.6309 | 0.3922 |
No log | 1.1385 | 74 | 0.4247 | 0.6202 | 0.4247 |
No log | 1.1692 | 76 | 0.3777 | 0.6191 | 0.3776 |
No log | 1.2 | 78 | 0.3634 | 0.5857 | 0.3633 |
No log | 1.2308 | 80 | 0.3498 | 0.5617 | 0.3495 |
No log | 1.2615 | 82 | 0.3438 | 0.5763 | 0.3437 |
No log | 1.2923 | 84 | 0.3736 | 0.6122 | 0.3736 |
No log | 1.3231 | 86 | 0.3695 | 0.6156 | 0.3695 |
No log | 1.3538 | 88 | 0.3555 | 0.6014 | 0.3554 |
No log | 1.3846 | 90 | 0.3487 | 0.5962 | 0.3486 |
No log | 1.4154 | 92 | 0.3489 | 0.6098 | 0.3488 |
No log | 1.4462 | 94 | 0.3380 | 0.5808 | 0.3379 |
No log | 1.4769 | 96 | 0.3571 | 0.6081 | 0.3572 |
No log | 1.5077 | 98 | 0.3722 | 0.6171 | 0.3724 |
No log | 1.5385 | 100 | 0.4097 | 0.6365 | 0.4100 |
No log | 1.5692 | 102 | 0.3790 | 0.6108 | 0.3794 |
No log | 1.6 | 104 | 0.3796 | 0.6035 | 0.3801 |
No log | 1.6308 | 106 | 0.3557 | 0.5632 | 0.3561 |
No log | 1.6615 | 108 | 0.3973 | 0.5962 | 0.3977 |
No log | 1.6923 | 110 | 0.4461 | 0.6243 | 0.4465 |
No log | 1.7231 | 112 | 0.4083 | 0.6133 | 0.4087 |
No log | 1.7538 | 114 | 0.3984 | 0.6157 | 0.3988 |
No log | 1.7846 | 116 | 0.3726 | 0.6102 | 0.3730 |
No log | 1.8154 | 118 | 0.3767 | 0.5977 | 0.3771 |
No log | 1.8462 | 120 | 0.4635 | 0.6273 | 0.4640 |
No log | 1.8769 | 122 | 0.6099 | 0.6037 | 0.6106 |
No log | 1.9077 | 124 | 0.6275 | 0.5888 | 0.6282 |
No log | 1.9385 | 126 | 0.5350 | 0.6223 | 0.5356 |
No log | 1.9692 | 128 | 0.4031 | 0.6213 | 0.4034 |
No log | 2.0 | 130 | 0.3393 | 0.5969 | 0.3394 |
No log | 2.0308 | 132 | 0.3287 | 0.5599 | 0.3288 |
No log | 2.0615 | 134 | 0.3515 | 0.5897 | 0.3516 |
No log | 2.0923 | 136 | 0.3996 | 0.6258 | 0.3997 |
No log | 2.1231 | 138 | 0.4641 | 0.6169 | 0.4643 |
No log | 2.1538 | 140 | 0.4542 | 0.6158 | 0.4544 |
No log | 2.1846 | 142 | 0.4004 | 0.6351 | 0.4005 |
No log | 2.2154 | 144 | 0.3401 | 0.5887 | 0.3402 |
No log | 2.2462 | 146 | 0.3235 | 0.5328 | 0.3235 |
No log | 2.2769 | 148 | 0.3321 | 0.5753 | 0.3321 |
No log | 2.3077 | 150 | 0.3804 | 0.6323 | 0.3805 |
No log | 2.3385 | 152 | 0.4133 | 0.6239 | 0.4135 |
No log | 2.3692 | 154 | 0.3998 | 0.6317 | 0.4000 |
No log | 2.4 | 156 | 0.3526 | 0.6064 | 0.3527 |
No log | 2.4308 | 158 | 0.3562 | 0.6005 | 0.3564 |
No log | 2.4615 | 160 | 0.3973 | 0.6415 | 0.3975 |
No log | 2.4923 | 162 | 0.4010 | 0.6347 | 0.4012 |
No log | 2.5231 | 164 | 0.3810 | 0.6306 | 0.3812 |
No log | 2.5538 | 166 | 0.3914 | 0.6271 | 0.3916 |
No log | 2.5846 | 168 | 0.4101 | 0.6216 | 0.4104 |
No log | 2.6154 | 170 | 0.3935 | 0.6240 | 0.3938 |
No log | 2.6462 | 172 | 0.3646 | 0.6070 | 0.3649 |
No log | 2.6769 | 174 | 0.3806 | 0.6188 | 0.3809 |
No log | 2.7077 | 176 | 0.3976 | 0.6294 | 0.3980 |
No log | 2.7385 | 178 | 0.3807 | 0.6188 | 0.3810 |
No log | 2.7692 | 180 | 0.3702 | 0.6231 | 0.3705 |
No log | 2.8 | 182 | 0.3468 | 0.5942 | 0.3469 |
No log | 2.8308 | 184 | 0.3611 | 0.6284 | 0.3613 |
No log | 2.8615 | 186 | 0.3921 | 0.6324 | 0.3923 |
No log | 2.8923 | 188 | 0.4505 | 0.6341 | 0.4508 |
No log | 2.9231 | 190 | 0.5436 | 0.6130 | 0.5441 |
No log | 2.9538 | 192 | 0.5516 | 0.5987 | 0.5521 |
No log | 2.9846 | 194 | 0.4740 | 0.6272 | 0.4744 |
No log | 3.0154 | 196 | 0.3665 | 0.6255 | 0.3667 |
No log | 3.0462 | 198 | 0.3328 | 0.5737 | 0.3329 |
No log | 3.0769 | 200 | 0.3368 | 0.5899 | 0.3369 |
No log | 3.1077 | 202 | 0.3630 | 0.6250 | 0.3631 |
No log | 3.1385 | 204 | 0.4167 | 0.6402 | 0.4169 |
No log | 3.1692 | 206 | 0.4774 | 0.6409 | 0.4776 |
No log | 3.2 | 208 | 0.4657 | 0.6437 | 0.4659 |
No log | 3.2308 | 210 | 0.4932 | 0.6426 | 0.4933 |
No log | 3.2615 | 212 | 0.4736 | 0.6453 | 0.4737 |
No log | 3.2923 | 214 | 0.4233 | 0.6436 | 0.4234 |
No log | 3.3231 | 216 | 0.4093 | 0.6436 | 0.4094 |
No log | 3.3538 | 218 | 0.4126 | 0.6488 | 0.4127 |
No log | 3.3846 | 220 | 0.4110 | 0.6481 | 0.4110 |
No log | 3.4154 | 222 | 0.4596 | 0.6397 | 0.4597 |
No log | 3.4462 | 224 | 0.4659 | 0.6426 | 0.4661 |
No log | 3.4769 | 226 | 0.4215 | 0.6391 | 0.4216 |
No log | 3.5077 | 228 | 0.3766 | 0.6305 | 0.3766 |
No log | 3.5385 | 230 | 0.3600 | 0.6084 | 0.3600 |
No log | 3.5692 | 232 | 0.3712 | 0.6256 | 0.3712 |
No log | 3.6 | 234 | 0.3671 | 0.6171 | 0.3671 |
No log | 3.6308 | 236 | 0.3682 | 0.6262 | 0.3683 |
No log | 3.6615 | 238 | 0.3608 | 0.6184 | 0.3609 |
No log | 3.6923 | 240 | 0.3834 | 0.6317 | 0.3835 |
No log | 3.7231 | 242 | 0.4443 | 0.6511 | 0.4445 |
No log | 3.7538 | 244 | 0.4779 | 0.6435 | 0.4781 |
No log | 3.7846 | 246 | 0.4705 | 0.6442 | 0.4708 |
No log | 3.8154 | 248 | 0.4286 | 0.6526 | 0.4288 |
No log | 3.8462 | 250 | 0.3918 | 0.6387 | 0.3920 |
No log | 3.8769 | 252 | 0.3711 | 0.6330 | 0.3712 |
No log | 3.9077 | 254 | 0.3700 | 0.6284 | 0.3701 |
No log | 3.9385 | 256 | 0.3633 | 0.6233 | 0.3633 |
No log | 3.9692 | 258 | 0.3682 | 0.6329 | 0.3683 |
No log | 4.0 | 260 | 0.3658 | 0.6262 | 0.3658 |
No log | 4.0308 | 262 | 0.3922 | 0.6462 | 0.3923 |
No log | 4.0615 | 264 | 0.4182 | 0.6565 | 0.4183 |
No log | 4.0923 | 266 | 0.4467 | 0.6587 | 0.4468 |
No log | 4.1231 | 268 | 0.4401 | 0.6663 | 0.4403 |
No log | 4.1538 | 270 | 0.4293 | 0.6641 | 0.4294 |
No log | 4.1846 | 272 | 0.4237 | 0.6599 | 0.4238 |
No log | 4.2154 | 274 | 0.4467 | 0.6677 | 0.4468 |
No log | 4.2462 | 276 | 0.4703 | 0.6726 | 0.4705 |
No log | 4.2769 | 278 | 0.4826 | 0.6690 | 0.4828 |
No log | 4.3077 | 280 | 0.4852 | 0.6654 | 0.4853 |
No log | 4.3385 | 282 | 0.4567 | 0.6699 | 0.4568 |
No log | 4.3692 | 284 | 0.4361 | 0.6591 | 0.4361 |
No log | 4.4 | 286 | 0.4165 | 0.6535 | 0.4165 |
No log | 4.4308 | 288 | 0.4167 | 0.6511 | 0.4168 |
No log | 4.4615 | 290 | 0.4213 | 0.6524 | 0.4213 |
No log | 4.4923 | 292 | 0.4168 | 0.6545 | 0.4168 |
No log | 4.5231 | 294 | 0.4303 | 0.6461 | 0.4304 |
No log | 4.5538 | 296 | 0.4488 | 0.6557 | 0.4490 |
No log | 4.5846 | 298 | 0.4573 | 0.6534 | 0.4574 |
No log | 4.6154 | 300 | 0.4809 | 0.6570 | 0.4811 |
No log | 4.6462 | 302 | 0.4878 | 0.6538 | 0.4881 |
No log | 4.6769 | 304 | 0.4771 | 0.6499 | 0.4773 |
No log | 4.7077 | 306 | 0.4567 | 0.6516 | 0.4569 |
No log | 4.7385 | 308 | 0.4453 | 0.6494 | 0.4455 |
No log | 4.7692 | 310 | 0.4356 | 0.6487 | 0.4358 |
No log | 4.8 | 312 | 0.4348 | 0.6465 | 0.4349 |
No log | 4.8308 | 314 | 0.4349 | 0.6465 | 0.4351 |
No log | 4.8615 | 316 | 0.4350 | 0.6458 | 0.4352 |
No log | 4.8923 | 318 | 0.4341 | 0.6497 | 0.4343 |
No log | 4.9231 | 320 | 0.4312 | 0.6504 | 0.4313 |
No log | 4.9538 | 322 | 0.4310 | 0.6504 | 0.4312 |
No log | 4.9846 | 324 | 0.4310 | 0.6497 | 0.4312 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1