bert_baseline_language_task3_fold4
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4340
- Qwk: 0.5769
- Mse: 0.4343
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0308 | 2 | 0.9109 | 0.1135 | 0.9120 |
No log | 0.0615 | 4 | 0.7302 | 0.0091 | 0.7310 |
No log | 0.0923 | 6 | 0.6473 | 0.0 | 0.6480 |
No log | 0.1231 | 8 | 0.6464 | 0.0 | 0.6469 |
No log | 0.1538 | 10 | 0.6452 | 0.0 | 0.6458 |
No log | 0.1846 | 12 | 0.6121 | 0.0 | 0.6126 |
No log | 0.2154 | 14 | 0.6376 | 0.0 | 0.6382 |
No log | 0.2462 | 16 | 0.6836 | 0.0 | 0.6841 |
No log | 0.2769 | 18 | 0.7015 | 0.0 | 0.7020 |
No log | 0.3077 | 20 | 0.6505 | 0.0 | 0.6510 |
No log | 0.3385 | 22 | 0.5816 | 0.0 | 0.5822 |
No log | 0.3692 | 24 | 0.5565 | 0.0 | 0.5571 |
No log | 0.4 | 26 | 0.5383 | 0.0 | 0.5389 |
No log | 0.4308 | 28 | 0.5152 | 0.0091 | 0.5157 |
No log | 0.4615 | 30 | 0.4960 | 0.0270 | 0.4965 |
No log | 0.4923 | 32 | 0.4781 | 0.1041 | 0.4785 |
No log | 0.5231 | 34 | 0.4595 | 0.1801 | 0.4599 |
No log | 0.5538 | 36 | 0.4648 | 0.2938 | 0.4653 |
No log | 0.5846 | 38 | 0.4753 | 0.4514 | 0.4758 |
No log | 0.6154 | 40 | 0.4224 | 0.4998 | 0.4225 |
No log | 0.6462 | 42 | 0.4749 | 0.3528 | 0.4746 |
No log | 0.6769 | 44 | 0.5212 | 0.3219 | 0.5210 |
No log | 0.7077 | 46 | 0.4233 | 0.3754 | 0.4233 |
No log | 0.7385 | 48 | 0.4789 | 0.5565 | 0.4792 |
No log | 0.7692 | 50 | 0.6057 | 0.5461 | 0.6062 |
No log | 0.8 | 52 | 0.7260 | 0.5404 | 0.7266 |
No log | 0.8308 | 54 | 0.6614 | 0.5465 | 0.6619 |
No log | 0.8615 | 56 | 0.5122 | 0.4793 | 0.5127 |
No log | 0.8923 | 58 | 0.4503 | 0.2917 | 0.4507 |
No log | 0.9231 | 60 | 0.4273 | 0.2707 | 0.4277 |
No log | 0.9538 | 62 | 0.4133 | 0.3275 | 0.4136 |
No log | 0.9846 | 64 | 0.4075 | 0.4202 | 0.4076 |
No log | 1.0154 | 66 | 0.4159 | 0.5118 | 0.4160 |
No log | 1.0462 | 68 | 0.4456 | 0.5714 | 0.4459 |
No log | 1.0769 | 70 | 0.4420 | 0.5985 | 0.4424 |
No log | 1.1077 | 72 | 0.4074 | 0.5653 | 0.4076 |
No log | 1.1385 | 74 | 0.3829 | 0.4871 | 0.3830 |
No log | 1.1692 | 76 | 0.3715 | 0.4828 | 0.3717 |
No log | 1.2 | 78 | 0.3620 | 0.4863 | 0.3623 |
No log | 1.2308 | 80 | 0.3671 | 0.5415 | 0.3674 |
No log | 1.2615 | 82 | 0.4030 | 0.5946 | 0.4033 |
No log | 1.2923 | 84 | 0.4396 | 0.5992 | 0.4399 |
No log | 1.3231 | 86 | 0.4332 | 0.5951 | 0.4334 |
No log | 1.3538 | 88 | 0.3744 | 0.5906 | 0.3747 |
No log | 1.3846 | 90 | 0.3379 | 0.5145 | 0.3381 |
No log | 1.4154 | 92 | 0.3385 | 0.5125 | 0.3387 |
No log | 1.4462 | 94 | 0.3708 | 0.5662 | 0.3711 |
No log | 1.4769 | 96 | 0.4722 | 0.6023 | 0.4724 |
No log | 1.5077 | 98 | 0.4995 | 0.6024 | 0.4998 |
No log | 1.5385 | 100 | 0.4179 | 0.5810 | 0.4182 |
No log | 1.5692 | 102 | 0.3509 | 0.5168 | 0.3512 |
No log | 1.6 | 104 | 0.3364 | 0.5036 | 0.3367 |
No log | 1.6308 | 106 | 0.3356 | 0.5394 | 0.3359 |
No log | 1.6615 | 108 | 0.3813 | 0.6251 | 0.3815 |
No log | 1.6923 | 110 | 0.4242 | 0.6416 | 0.4245 |
No log | 1.7231 | 112 | 0.4424 | 0.6371 | 0.4427 |
No log | 1.7538 | 114 | 0.4157 | 0.6542 | 0.4160 |
No log | 1.7846 | 116 | 0.3935 | 0.6434 | 0.3937 |
No log | 1.8154 | 118 | 0.3787 | 0.6387 | 0.3790 |
No log | 1.8462 | 120 | 0.3835 | 0.6349 | 0.3837 |
No log | 1.8769 | 122 | 0.4416 | 0.6288 | 0.4419 |
No log | 1.9077 | 124 | 0.5026 | 0.6156 | 0.5028 |
No log | 1.9385 | 126 | 0.4854 | 0.6136 | 0.4857 |
No log | 1.9692 | 128 | 0.4068 | 0.6195 | 0.4071 |
No log | 2.0 | 130 | 0.3600 | 0.5947 | 0.3603 |
No log | 2.0308 | 132 | 0.3585 | 0.5905 | 0.3587 |
No log | 2.0615 | 134 | 0.3569 | 0.5810 | 0.3570 |
No log | 2.0923 | 136 | 0.3751 | 0.5943 | 0.3752 |
No log | 2.1231 | 138 | 0.4052 | 0.6099 | 0.4054 |
No log | 2.1538 | 140 | 0.4135 | 0.6173 | 0.4137 |
No log | 2.1846 | 142 | 0.3853 | 0.6116 | 0.3854 |
No log | 2.2154 | 144 | 0.3977 | 0.6213 | 0.3978 |
No log | 2.2462 | 146 | 0.4319 | 0.6339 | 0.4321 |
No log | 2.2769 | 148 | 0.4184 | 0.6320 | 0.4185 |
No log | 2.3077 | 150 | 0.4158 | 0.6281 | 0.4159 |
No log | 2.3385 | 152 | 0.4513 | 0.6319 | 0.4514 |
No log | 2.3692 | 154 | 0.4589 | 0.6325 | 0.4590 |
No log | 2.4 | 156 | 0.4841 | 0.6217 | 0.4843 |
No log | 2.4308 | 158 | 0.4072 | 0.6167 | 0.4073 |
No log | 2.4615 | 160 | 0.3546 | 0.5723 | 0.3546 |
No log | 2.4923 | 162 | 0.3616 | 0.5908 | 0.3617 |
No log | 2.5231 | 164 | 0.3942 | 0.5987 | 0.3944 |
No log | 2.5538 | 166 | 0.4663 | 0.6275 | 0.4666 |
No log | 2.5846 | 168 | 0.4424 | 0.6243 | 0.4426 |
No log | 2.6154 | 170 | 0.4280 | 0.6225 | 0.4282 |
No log | 2.6462 | 172 | 0.3988 | 0.6006 | 0.3990 |
No log | 2.6769 | 174 | 0.4066 | 0.5998 | 0.4068 |
No log | 2.7077 | 176 | 0.3877 | 0.5780 | 0.3879 |
No log | 2.7385 | 178 | 0.4221 | 0.5808 | 0.4223 |
No log | 2.7692 | 180 | 0.4523 | 0.5856 | 0.4526 |
No log | 2.8 | 182 | 0.4291 | 0.5832 | 0.4294 |
No log | 2.8308 | 184 | 0.3831 | 0.5593 | 0.3833 |
No log | 2.8615 | 186 | 0.3714 | 0.5692 | 0.3716 |
No log | 2.8923 | 188 | 0.3999 | 0.5857 | 0.4001 |
No log | 2.9231 | 190 | 0.4673 | 0.6274 | 0.4676 |
No log | 2.9538 | 192 | 0.5013 | 0.6144 | 0.5016 |
No log | 2.9846 | 194 | 0.4775 | 0.6045 | 0.4777 |
No log | 3.0154 | 196 | 0.4092 | 0.6073 | 0.4094 |
No log | 3.0462 | 198 | 0.3818 | 0.5803 | 0.3820 |
No log | 3.0769 | 200 | 0.3905 | 0.5896 | 0.3907 |
No log | 3.1077 | 202 | 0.4430 | 0.6144 | 0.4432 |
No log | 3.1385 | 204 | 0.4667 | 0.6174 | 0.4669 |
No log | 3.1692 | 206 | 0.4787 | 0.6228 | 0.4789 |
No log | 3.2 | 208 | 0.4414 | 0.6197 | 0.4416 |
No log | 3.2308 | 210 | 0.3774 | 0.6170 | 0.3775 |
No log | 3.2615 | 212 | 0.3546 | 0.5664 | 0.3546 |
No log | 3.2923 | 214 | 0.3575 | 0.5688 | 0.3576 |
No log | 3.3231 | 216 | 0.3930 | 0.6024 | 0.3932 |
No log | 3.3538 | 218 | 0.4818 | 0.6159 | 0.4821 |
No log | 3.3846 | 220 | 0.5077 | 0.6107 | 0.5080 |
No log | 3.4154 | 222 | 0.4607 | 0.6259 | 0.4609 |
No log | 3.4462 | 224 | 0.4252 | 0.6139 | 0.4254 |
No log | 3.4769 | 226 | 0.3971 | 0.6024 | 0.3974 |
No log | 3.5077 | 228 | 0.3929 | 0.5945 | 0.3931 |
No log | 3.5385 | 230 | 0.3988 | 0.5954 | 0.3990 |
No log | 3.5692 | 232 | 0.4157 | 0.5997 | 0.4160 |
No log | 3.6 | 234 | 0.4042 | 0.5909 | 0.4044 |
No log | 3.6308 | 236 | 0.3802 | 0.5811 | 0.3804 |
No log | 3.6615 | 238 | 0.3662 | 0.5680 | 0.3663 |
No log | 3.6923 | 240 | 0.3772 | 0.5796 | 0.3774 |
No log | 3.7231 | 242 | 0.4299 | 0.5936 | 0.4302 |
No log | 3.7538 | 244 | 0.5352 | 0.6100 | 0.5356 |
No log | 3.7846 | 246 | 0.6217 | 0.6080 | 0.6221 |
No log | 3.8154 | 248 | 0.6413 | 0.5945 | 0.6417 |
No log | 3.8462 | 250 | 0.5878 | 0.6027 | 0.5882 |
No log | 3.8769 | 252 | 0.4979 | 0.6006 | 0.4982 |
No log | 3.9077 | 254 | 0.4257 | 0.5829 | 0.4260 |
No log | 3.9385 | 256 | 0.3851 | 0.5768 | 0.3853 |
No log | 3.9692 | 258 | 0.3790 | 0.5720 | 0.3792 |
No log | 4.0 | 260 | 0.3900 | 0.5769 | 0.3902 |
No log | 4.0308 | 262 | 0.4249 | 0.6061 | 0.4252 |
No log | 4.0615 | 264 | 0.4773 | 0.6123 | 0.4776 |
No log | 4.0923 | 266 | 0.5001 | 0.6182 | 0.5005 |
No log | 4.1231 | 268 | 0.4873 | 0.6129 | 0.4877 |
No log | 4.1538 | 270 | 0.4502 | 0.6009 | 0.4505 |
No log | 4.1846 | 272 | 0.4219 | 0.5944 | 0.4222 |
No log | 4.2154 | 274 | 0.4092 | 0.5796 | 0.4095 |
No log | 4.2462 | 276 | 0.4165 | 0.5812 | 0.4168 |
No log | 4.2769 | 278 | 0.4317 | 0.6021 | 0.4320 |
No log | 4.3077 | 280 | 0.4375 | 0.5986 | 0.4378 |
No log | 4.3385 | 282 | 0.4378 | 0.5945 | 0.4381 |
No log | 4.3692 | 284 | 0.4515 | 0.5955 | 0.4518 |
No log | 4.4 | 286 | 0.4560 | 0.5918 | 0.4563 |
No log | 4.4308 | 288 | 0.4702 | 0.5890 | 0.4705 |
No log | 4.4615 | 290 | 0.4805 | 0.5937 | 0.4809 |
No log | 4.4923 | 292 | 0.4797 | 0.5914 | 0.4800 |
No log | 4.5231 | 294 | 0.4620 | 0.5818 | 0.4623 |
No log | 4.5538 | 296 | 0.4500 | 0.5913 | 0.4503 |
No log | 4.5846 | 298 | 0.4468 | 0.5909 | 0.4471 |
No log | 4.6154 | 300 | 0.4467 | 0.5913 | 0.4470 |
No log | 4.6462 | 302 | 0.4462 | 0.5913 | 0.4465 |
No log | 4.6769 | 304 | 0.4411 | 0.5913 | 0.4414 |
No log | 4.7077 | 306 | 0.4387 | 0.5866 | 0.4390 |
No log | 4.7385 | 308 | 0.4366 | 0.5796 | 0.4369 |
No log | 4.7692 | 310 | 0.4318 | 0.5703 | 0.4321 |
No log | 4.8 | 312 | 0.4290 | 0.5699 | 0.4293 |
No log | 4.8308 | 314 | 0.4322 | 0.5723 | 0.4324 |
No log | 4.8615 | 316 | 0.4341 | 0.5769 | 0.4344 |
No log | 4.8923 | 318 | 0.4340 | 0.5769 | 0.4343 |
No log | 4.9231 | 320 | 0.4352 | 0.5769 | 0.4355 |
No log | 4.9538 | 322 | 0.4348 | 0.5727 | 0.4351 |
No log | 4.9846 | 324 | 0.4340 | 0.5769 | 0.4343 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_language_task3_fold4
Base model
google-bert/bert-base-cased