bert_baseline_language_task6_fold2
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4616
- Qwk: 0.7181
- Mse: 0.4616
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0294 | 2 | 2.2287 | 0.0 | 2.2287 |
No log | 0.0588 | 4 | 1.8372 | 0.0179 | 1.8372 |
No log | 0.0882 | 6 | 1.5803 | 0.0059 | 1.5803 |
No log | 0.1176 | 8 | 1.2550 | 0.0059 | 1.2550 |
No log | 0.1471 | 10 | 0.9907 | 0.0 | 0.9907 |
No log | 0.1765 | 12 | 0.7923 | 0.0 | 0.7923 |
No log | 0.2059 | 14 | 0.7107 | 0.3259 | 0.7107 |
No log | 0.2353 | 16 | 0.6947 | 0.3362 | 0.6947 |
No log | 0.2647 | 18 | 0.7107 | 0.3066 | 0.7107 |
No log | 0.2941 | 20 | 0.6373 | 0.3999 | 0.6373 |
No log | 0.3235 | 22 | 0.5741 | 0.3890 | 0.5741 |
No log | 0.3529 | 24 | 0.5646 | 0.3197 | 0.5646 |
No log | 0.3824 | 26 | 0.4957 | 0.4027 | 0.4957 |
No log | 0.4118 | 28 | 0.6238 | 0.4438 | 0.6238 |
No log | 0.4412 | 30 | 0.6363 | 0.4674 | 0.6363 |
No log | 0.4706 | 32 | 0.4986 | 0.4561 | 0.4986 |
No log | 0.5 | 34 | 0.4938 | 0.4388 | 0.4938 |
No log | 0.5294 | 36 | 0.4691 | 0.4968 | 0.4691 |
No log | 0.5588 | 38 | 0.4908 | 0.5026 | 0.4908 |
No log | 0.5882 | 40 | 0.4847 | 0.4816 | 0.4847 |
No log | 0.6176 | 42 | 0.4717 | 0.4558 | 0.4717 |
No log | 0.6471 | 44 | 0.4712 | 0.4584 | 0.4712 |
No log | 0.6765 | 46 | 0.4799 | 0.5080 | 0.4799 |
No log | 0.7059 | 48 | 0.4395 | 0.4749 | 0.4395 |
No log | 0.7353 | 50 | 0.4252 | 0.4815 | 0.4252 |
No log | 0.7647 | 52 | 0.4386 | 0.5341 | 0.4386 |
No log | 0.7941 | 54 | 0.5206 | 0.5752 | 0.5206 |
No log | 0.8235 | 56 | 0.4683 | 0.5597 | 0.4683 |
No log | 0.8529 | 58 | 0.4309 | 0.5441 | 0.4309 |
No log | 0.8824 | 60 | 0.4287 | 0.5478 | 0.4287 |
No log | 0.9118 | 62 | 0.4569 | 0.5535 | 0.4569 |
No log | 0.9412 | 64 | 0.5399 | 0.5671 | 0.5399 |
No log | 0.9706 | 66 | 0.5357 | 0.5699 | 0.5357 |
No log | 1.0 | 68 | 0.4800 | 0.5607 | 0.4800 |
No log | 1.0294 | 70 | 0.4157 | 0.5522 | 0.4157 |
No log | 1.0588 | 72 | 0.4106 | 0.5392 | 0.4106 |
No log | 1.0882 | 74 | 0.4182 | 0.5590 | 0.4182 |
No log | 1.1176 | 76 | 0.4272 | 0.5619 | 0.4272 |
No log | 1.1471 | 78 | 0.4669 | 0.5650 | 0.4669 |
No log | 1.1765 | 80 | 0.4211 | 0.5524 | 0.4211 |
No log | 1.2059 | 82 | 0.3831 | 0.5251 | 0.3831 |
No log | 1.2353 | 84 | 0.3785 | 0.5286 | 0.3785 |
No log | 1.2647 | 86 | 0.3964 | 0.5328 | 0.3964 |
No log | 1.2941 | 88 | 0.4628 | 0.5726 | 0.4628 |
No log | 1.3235 | 90 | 0.5692 | 0.6034 | 0.5692 |
No log | 1.3529 | 92 | 0.5280 | 0.5730 | 0.5280 |
No log | 1.3824 | 94 | 0.4229 | 0.5586 | 0.4229 |
No log | 1.4118 | 96 | 0.3793 | 0.5567 | 0.3793 |
No log | 1.4412 | 98 | 0.3886 | 0.5558 | 0.3886 |
No log | 1.4706 | 100 | 0.4232 | 0.5708 | 0.4232 |
No log | 1.5 | 102 | 0.4903 | 0.6363 | 0.4903 |
No log | 1.5294 | 104 | 0.5600 | 0.6660 | 0.5600 |
No log | 1.5588 | 106 | 0.4788 | 0.6169 | 0.4788 |
No log | 1.5882 | 108 | 0.3943 | 0.5604 | 0.3943 |
No log | 1.6176 | 110 | 0.3795 | 0.5503 | 0.3795 |
No log | 1.6471 | 112 | 0.3801 | 0.5544 | 0.3801 |
No log | 1.6765 | 114 | 0.3726 | 0.5538 | 0.3726 |
No log | 1.7059 | 116 | 0.3757 | 0.5588 | 0.3757 |
No log | 1.7353 | 118 | 0.3989 | 0.5826 | 0.3989 |
No log | 1.7647 | 120 | 0.4620 | 0.6683 | 0.4620 |
No log | 1.7941 | 122 | 0.4743 | 0.6907 | 0.4743 |
No log | 1.8235 | 124 | 0.4231 | 0.6453 | 0.4231 |
No log | 1.8529 | 126 | 0.4170 | 0.6370 | 0.4170 |
No log | 1.8824 | 128 | 0.3957 | 0.6128 | 0.3957 |
No log | 1.9118 | 130 | 0.3878 | 0.6224 | 0.3878 |
No log | 1.9412 | 132 | 0.4211 | 0.6545 | 0.4211 |
No log | 1.9706 | 134 | 0.4202 | 0.6533 | 0.4202 |
No log | 2.0 | 136 | 0.4625 | 0.7013 | 0.4625 |
No log | 2.0294 | 138 | 0.4733 | 0.7189 | 0.4733 |
No log | 2.0588 | 140 | 0.4476 | 0.7017 | 0.4476 |
No log | 2.0882 | 142 | 0.3759 | 0.6334 | 0.3759 |
No log | 2.1176 | 144 | 0.3469 | 0.5588 | 0.3469 |
No log | 2.1471 | 146 | 0.3510 | 0.5593 | 0.3510 |
No log | 2.1765 | 148 | 0.3630 | 0.6196 | 0.3630 |
No log | 2.2059 | 150 | 0.4440 | 0.7086 | 0.4440 |
No log | 2.2353 | 152 | 0.4514 | 0.6962 | 0.4514 |
No log | 2.2647 | 154 | 0.3885 | 0.6167 | 0.3885 |
No log | 2.2941 | 156 | 0.3739 | 0.5548 | 0.3739 |
No log | 2.3235 | 158 | 0.3738 | 0.5432 | 0.3738 |
No log | 2.3529 | 160 | 0.3637 | 0.5673 | 0.3637 |
No log | 2.3824 | 162 | 0.4134 | 0.6051 | 0.4134 |
No log | 2.4118 | 164 | 0.4746 | 0.6182 | 0.4746 |
No log | 2.4412 | 166 | 0.4661 | 0.5976 | 0.4661 |
No log | 2.4706 | 168 | 0.4352 | 0.5821 | 0.4352 |
No log | 2.5 | 170 | 0.3672 | 0.5693 | 0.3672 |
No log | 2.5294 | 172 | 0.3560 | 0.5622 | 0.3560 |
No log | 2.5588 | 174 | 0.3568 | 0.5664 | 0.3568 |
No log | 2.5882 | 176 | 0.3662 | 0.5731 | 0.3662 |
No log | 2.6176 | 178 | 0.4478 | 0.6053 | 0.4478 |
No log | 2.6471 | 180 | 0.6028 | 0.6360 | 0.6028 |
No log | 2.6765 | 182 | 0.6808 | 0.6402 | 0.6808 |
No log | 2.7059 | 184 | 0.6392 | 0.6648 | 0.6392 |
No log | 2.7353 | 186 | 0.5239 | 0.6822 | 0.5239 |
No log | 2.7647 | 188 | 0.3988 | 0.6306 | 0.3988 |
No log | 2.7941 | 190 | 0.3564 | 0.5899 | 0.3564 |
No log | 2.8235 | 192 | 0.3538 | 0.5830 | 0.3538 |
No log | 2.8529 | 194 | 0.3774 | 0.6283 | 0.3774 |
No log | 2.8824 | 196 | 0.4543 | 0.7034 | 0.4543 |
No log | 2.9118 | 198 | 0.5116 | 0.7238 | 0.5116 |
No log | 2.9412 | 200 | 0.5246 | 0.7317 | 0.5246 |
No log | 2.9706 | 202 | 0.4793 | 0.7011 | 0.4793 |
No log | 3.0 | 204 | 0.4097 | 0.6607 | 0.4097 |
No log | 3.0294 | 206 | 0.3682 | 0.5927 | 0.3682 |
No log | 3.0588 | 208 | 0.3662 | 0.5946 | 0.3662 |
No log | 3.0882 | 210 | 0.3723 | 0.6122 | 0.3723 |
No log | 3.1176 | 212 | 0.3872 | 0.6368 | 0.3872 |
No log | 3.1471 | 214 | 0.3951 | 0.6436 | 0.3951 |
No log | 3.1765 | 216 | 0.4361 | 0.6954 | 0.4361 |
No log | 3.2059 | 218 | 0.4445 | 0.7051 | 0.4445 |
No log | 3.2353 | 220 | 0.4103 | 0.6713 | 0.4103 |
No log | 3.2647 | 222 | 0.3786 | 0.6266 | 0.3786 |
No log | 3.2941 | 224 | 0.3647 | 0.6039 | 0.3647 |
No log | 3.3235 | 226 | 0.3766 | 0.6076 | 0.3766 |
No log | 3.3529 | 228 | 0.4193 | 0.6325 | 0.4193 |
No log | 3.3824 | 230 | 0.4691 | 0.6566 | 0.4691 |
No log | 3.4118 | 232 | 0.5246 | 0.6975 | 0.5246 |
No log | 3.4412 | 234 | 0.5207 | 0.6985 | 0.5207 |
No log | 3.4706 | 236 | 0.4934 | 0.7012 | 0.4934 |
No log | 3.5 | 238 | 0.4623 | 0.6883 | 0.4623 |
No log | 3.5294 | 240 | 0.4157 | 0.6762 | 0.4157 |
No log | 3.5588 | 242 | 0.3874 | 0.6721 | 0.3874 |
No log | 3.5882 | 244 | 0.3975 | 0.6686 | 0.3975 |
No log | 3.6176 | 246 | 0.4289 | 0.6950 | 0.4289 |
No log | 3.6471 | 248 | 0.4126 | 0.6884 | 0.4126 |
No log | 3.6765 | 250 | 0.4162 | 0.6884 | 0.4162 |
No log | 3.7059 | 252 | 0.4628 | 0.7118 | 0.4628 |
No log | 3.7353 | 254 | 0.5588 | 0.7309 | 0.5588 |
No log | 3.7647 | 256 | 0.5880 | 0.7325 | 0.5880 |
No log | 3.7941 | 258 | 0.5813 | 0.7298 | 0.5813 |
No log | 3.8235 | 260 | 0.5110 | 0.7382 | 0.5110 |
No log | 3.8529 | 262 | 0.4454 | 0.7160 | 0.4454 |
No log | 3.8824 | 264 | 0.3902 | 0.6786 | 0.3902 |
No log | 3.9118 | 266 | 0.3769 | 0.6668 | 0.3769 |
No log | 3.9412 | 268 | 0.3872 | 0.6868 | 0.3872 |
No log | 3.9706 | 270 | 0.4121 | 0.6942 | 0.4121 |
No log | 4.0 | 272 | 0.4399 | 0.7115 | 0.4399 |
No log | 4.0294 | 274 | 0.4610 | 0.7201 | 0.4610 |
No log | 4.0588 | 276 | 0.4591 | 0.7247 | 0.4591 |
No log | 4.0882 | 278 | 0.4276 | 0.6958 | 0.4276 |
No log | 4.1176 | 280 | 0.4059 | 0.6860 | 0.4059 |
No log | 4.1471 | 282 | 0.3903 | 0.6804 | 0.3903 |
No log | 4.1765 | 284 | 0.4012 | 0.6905 | 0.4012 |
No log | 4.2059 | 286 | 0.4118 | 0.6936 | 0.4118 |
No log | 4.2353 | 288 | 0.4037 | 0.6832 | 0.4037 |
No log | 4.2647 | 290 | 0.3977 | 0.6868 | 0.3977 |
No log | 4.2941 | 292 | 0.4002 | 0.6888 | 0.4002 |
No log | 4.3235 | 294 | 0.4075 | 0.6962 | 0.4075 |
No log | 4.3529 | 296 | 0.4002 | 0.6819 | 0.4002 |
No log | 4.3824 | 298 | 0.4015 | 0.6862 | 0.4015 |
No log | 4.4118 | 300 | 0.4175 | 0.7002 | 0.4175 |
No log | 4.4412 | 302 | 0.4355 | 0.6978 | 0.4355 |
No log | 4.4706 | 304 | 0.4575 | 0.6999 | 0.4575 |
No log | 4.5 | 306 | 0.4685 | 0.7182 | 0.4685 |
No log | 4.5294 | 308 | 0.4751 | 0.7181 | 0.4751 |
No log | 4.5588 | 310 | 0.4817 | 0.7190 | 0.4817 |
No log | 4.5882 | 312 | 0.4805 | 0.7190 | 0.4805 |
No log | 4.6176 | 314 | 0.4767 | 0.7233 | 0.4767 |
No log | 4.6471 | 316 | 0.4841 | 0.7220 | 0.4841 |
No log | 4.6765 | 318 | 0.4941 | 0.7282 | 0.4941 |
No log | 4.7059 | 320 | 0.4988 | 0.7351 | 0.4988 |
No log | 4.7353 | 322 | 0.4986 | 0.7351 | 0.4986 |
No log | 4.7647 | 324 | 0.4949 | 0.7340 | 0.4949 |
No log | 4.7941 | 326 | 0.4862 | 0.7250 | 0.4862 |
No log | 4.8235 | 328 | 0.4803 | 0.7214 | 0.4803 |
No log | 4.8529 | 330 | 0.4736 | 0.7256 | 0.4736 |
No log | 4.8824 | 332 | 0.4694 | 0.7147 | 0.4694 |
No log | 4.9118 | 334 | 0.4678 | 0.7148 | 0.4678 |
No log | 4.9412 | 336 | 0.4638 | 0.7181 | 0.4638 |
No log | 4.9706 | 338 | 0.4623 | 0.7181 | 0.4623 |
No log | 5.0 | 340 | 0.4616 | 0.7181 | 0.4616 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_language_task6_fold2
Base model
google-bert/bert-base-cased