bert_baseline_prompt_adherence_task3_fold4
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3672
- Qwk: 0.6476
- Mse: 0.3673
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0308 | 2 | 0.9615 | 0.1429 | 0.9616 |
No log | 0.0615 | 4 | 0.7862 | 0.0038 | 0.7858 |
No log | 0.0923 | 6 | 0.6844 | 0.0 | 0.6838 |
No log | 0.1231 | 8 | 0.6747 | 0.0 | 0.6741 |
No log | 0.1538 | 10 | 0.6542 | 0.0 | 0.6535 |
No log | 0.1846 | 12 | 0.6353 | 0.0 | 0.6346 |
No log | 0.2154 | 14 | 0.6257 | 0.0 | 0.6251 |
No log | 0.2462 | 16 | 0.6083 | 0.0 | 0.6077 |
No log | 0.2769 | 18 | 0.5683 | 0.0 | 0.5677 |
No log | 0.3077 | 20 | 0.5631 | 0.0087 | 0.5626 |
No log | 0.3385 | 22 | 0.5316 | 0.0587 | 0.5312 |
No log | 0.3692 | 24 | 0.5169 | 0.0454 | 0.5164 |
No log | 0.4 | 26 | 0.6864 | 0.0277 | 0.6859 |
No log | 0.4308 | 28 | 0.7257 | 0.1009 | 0.7252 |
No log | 0.4615 | 30 | 0.5620 | 0.4027 | 0.5615 |
No log | 0.4923 | 32 | 0.4296 | 0.4319 | 0.4292 |
No log | 0.5231 | 34 | 0.4145 | 0.3748 | 0.4142 |
No log | 0.5538 | 36 | 0.4076 | 0.4540 | 0.4073 |
No log | 0.5846 | 38 | 0.4092 | 0.4943 | 0.4091 |
No log | 0.6154 | 40 | 0.4155 | 0.5085 | 0.4154 |
No log | 0.6462 | 42 | 0.3900 | 0.4752 | 0.3899 |
No log | 0.6769 | 44 | 0.3908 | 0.4653 | 0.3907 |
No log | 0.7077 | 46 | 0.3797 | 0.5278 | 0.3797 |
No log | 0.7385 | 48 | 0.4396 | 0.5822 | 0.4395 |
No log | 0.7692 | 50 | 0.5112 | 0.5465 | 0.5110 |
No log | 0.8 | 52 | 0.4901 | 0.5905 | 0.4898 |
No log | 0.8308 | 54 | 0.4233 | 0.5483 | 0.4230 |
No log | 0.8615 | 56 | 0.3703 | 0.5119 | 0.3701 |
No log | 0.8923 | 58 | 0.3680 | 0.4891 | 0.3679 |
No log | 0.9231 | 60 | 0.3758 | 0.4994 | 0.3758 |
No log | 0.9538 | 62 | 0.3686 | 0.5173 | 0.3687 |
No log | 0.9846 | 64 | 0.3553 | 0.5850 | 0.3554 |
No log | 1.0154 | 66 | 0.3982 | 0.6446 | 0.3982 |
No log | 1.0462 | 68 | 0.4363 | 0.6294 | 0.4363 |
No log | 1.0769 | 70 | 0.4614 | 0.6294 | 0.4614 |
No log | 1.1077 | 72 | 0.3792 | 0.6388 | 0.3794 |
No log | 1.1385 | 74 | 0.3585 | 0.5345 | 0.3588 |
No log | 1.1692 | 76 | 0.3653 | 0.4926 | 0.3656 |
No log | 1.2 | 78 | 0.3399 | 0.5941 | 0.3401 |
No log | 1.2308 | 80 | 0.3858 | 0.6290 | 0.3858 |
No log | 1.2615 | 82 | 0.3975 | 0.6239 | 0.3974 |
No log | 1.2923 | 84 | 0.3774 | 0.6024 | 0.3773 |
No log | 1.3231 | 86 | 0.3559 | 0.5760 | 0.3559 |
No log | 1.3538 | 88 | 0.3482 | 0.5222 | 0.3483 |
No log | 1.3846 | 90 | 0.3434 | 0.5102 | 0.3434 |
No log | 1.4154 | 92 | 0.3413 | 0.5185 | 0.3413 |
No log | 1.4462 | 94 | 0.3582 | 0.5777 | 0.3580 |
No log | 1.4769 | 96 | 0.4007 | 0.6123 | 0.4005 |
No log | 1.5077 | 98 | 0.4155 | 0.6218 | 0.4152 |
No log | 1.5385 | 100 | 0.3631 | 0.6169 | 0.3631 |
No log | 1.5692 | 102 | 0.3270 | 0.5561 | 0.3272 |
No log | 1.6 | 104 | 0.3283 | 0.5718 | 0.3285 |
No log | 1.6308 | 106 | 0.3685 | 0.6305 | 0.3685 |
No log | 1.6615 | 108 | 0.4489 | 0.6318 | 0.4488 |
No log | 1.6923 | 110 | 0.4564 | 0.6312 | 0.4563 |
No log | 1.7231 | 112 | 0.3829 | 0.6407 | 0.3829 |
No log | 1.7538 | 114 | 0.3263 | 0.5923 | 0.3265 |
No log | 1.7846 | 116 | 0.3309 | 0.5543 | 0.3312 |
No log | 1.8154 | 118 | 0.3249 | 0.5825 | 0.3250 |
No log | 1.8462 | 120 | 0.3435 | 0.6119 | 0.3435 |
No log | 1.8769 | 122 | 0.4346 | 0.6258 | 0.4345 |
No log | 1.9077 | 124 | 0.5205 | 0.6379 | 0.5201 |
No log | 1.9385 | 126 | 0.5314 | 0.6348 | 0.5311 |
No log | 1.9692 | 128 | 0.4719 | 0.6443 | 0.4717 |
No log | 2.0 | 130 | 0.3841 | 0.6266 | 0.3840 |
No log | 2.0308 | 132 | 0.3337 | 0.5746 | 0.3337 |
No log | 2.0615 | 134 | 0.3699 | 0.4733 | 0.3700 |
No log | 2.0923 | 136 | 0.3926 | 0.4274 | 0.3928 |
No log | 2.1231 | 138 | 0.3637 | 0.4600 | 0.3639 |
No log | 2.1538 | 140 | 0.3353 | 0.5317 | 0.3354 |
No log | 2.1846 | 142 | 0.3592 | 0.5948 | 0.3591 |
No log | 2.2154 | 144 | 0.3889 | 0.6171 | 0.3888 |
No log | 2.2462 | 146 | 0.3890 | 0.6239 | 0.3889 |
No log | 2.2769 | 148 | 0.3593 | 0.6240 | 0.3593 |
No log | 2.3077 | 150 | 0.3409 | 0.6086 | 0.3410 |
No log | 2.3385 | 152 | 0.3386 | 0.5812 | 0.3387 |
No log | 2.3692 | 154 | 0.3416 | 0.5988 | 0.3417 |
No log | 2.4 | 156 | 0.3500 | 0.6069 | 0.3500 |
No log | 2.4308 | 158 | 0.3473 | 0.5999 | 0.3474 |
No log | 2.4615 | 160 | 0.3635 | 0.6239 | 0.3635 |
No log | 2.4923 | 162 | 0.3797 | 0.6424 | 0.3796 |
No log | 2.5231 | 164 | 0.3800 | 0.6418 | 0.3800 |
No log | 2.5538 | 166 | 0.3826 | 0.6463 | 0.3827 |
No log | 2.5846 | 168 | 0.3477 | 0.6192 | 0.3479 |
No log | 2.6154 | 170 | 0.3348 | 0.5882 | 0.3350 |
No log | 2.6462 | 172 | 0.3317 | 0.5717 | 0.3318 |
No log | 2.6769 | 174 | 0.3416 | 0.5885 | 0.3416 |
No log | 2.7077 | 176 | 0.3816 | 0.5900 | 0.3815 |
No log | 2.7385 | 178 | 0.4602 | 0.6362 | 0.4601 |
No log | 2.7692 | 180 | 0.4794 | 0.6460 | 0.4793 |
No log | 2.8 | 182 | 0.4356 | 0.6327 | 0.4354 |
No log | 2.8308 | 184 | 0.3822 | 0.6207 | 0.3822 |
No log | 2.8615 | 186 | 0.3481 | 0.6257 | 0.3482 |
No log | 2.8923 | 188 | 0.3499 | 0.6358 | 0.3500 |
No log | 2.9231 | 190 | 0.3737 | 0.6458 | 0.3739 |
No log | 2.9538 | 192 | 0.3877 | 0.6515 | 0.3879 |
No log | 2.9846 | 194 | 0.4120 | 0.6824 | 0.4121 |
No log | 3.0154 | 196 | 0.4185 | 0.6528 | 0.4186 |
No log | 3.0462 | 198 | 0.4191 | 0.6368 | 0.4191 |
No log | 3.0769 | 200 | 0.3750 | 0.6447 | 0.3751 |
No log | 3.1077 | 202 | 0.3520 | 0.6394 | 0.3521 |
No log | 3.1385 | 204 | 0.3416 | 0.6069 | 0.3417 |
No log | 3.1692 | 206 | 0.3451 | 0.6084 | 0.3451 |
No log | 3.2 | 208 | 0.3505 | 0.6130 | 0.3505 |
No log | 3.2308 | 210 | 0.3410 | 0.5970 | 0.3411 |
No log | 3.2615 | 212 | 0.3320 | 0.5733 | 0.3321 |
No log | 3.2923 | 214 | 0.3347 | 0.5757 | 0.3348 |
No log | 3.3231 | 216 | 0.3565 | 0.6142 | 0.3565 |
No log | 3.3538 | 218 | 0.3948 | 0.6357 | 0.3948 |
No log | 3.3846 | 220 | 0.4004 | 0.6454 | 0.4004 |
No log | 3.4154 | 222 | 0.3671 | 0.6277 | 0.3672 |
No log | 3.4462 | 224 | 0.3385 | 0.5896 | 0.3387 |
No log | 3.4769 | 226 | 0.3378 | 0.5551 | 0.3380 |
No log | 3.5077 | 228 | 0.3388 | 0.5810 | 0.3391 |
No log | 3.5385 | 230 | 0.3547 | 0.6271 | 0.3549 |
No log | 3.5692 | 232 | 0.3822 | 0.6452 | 0.3823 |
No log | 3.6 | 234 | 0.3794 | 0.6401 | 0.3795 |
No log | 3.6308 | 236 | 0.3584 | 0.6388 | 0.3585 |
No log | 3.6615 | 238 | 0.3366 | 0.6063 | 0.3368 |
No log | 3.6923 | 240 | 0.3337 | 0.6033 | 0.3339 |
No log | 3.7231 | 242 | 0.3443 | 0.6309 | 0.3445 |
No log | 3.7538 | 244 | 0.3600 | 0.6476 | 0.3601 |
No log | 3.7846 | 246 | 0.3946 | 0.6493 | 0.3946 |
No log | 3.8154 | 248 | 0.4118 | 0.6646 | 0.4118 |
No log | 3.8462 | 250 | 0.3983 | 0.6572 | 0.3984 |
No log | 3.8769 | 252 | 0.3868 | 0.6631 | 0.3869 |
No log | 3.9077 | 254 | 0.3689 | 0.6476 | 0.3691 |
No log | 3.9385 | 256 | 0.3520 | 0.6317 | 0.3522 |
No log | 3.9692 | 258 | 0.3393 | 0.6187 | 0.3395 |
No log | 4.0 | 260 | 0.3356 | 0.6003 | 0.3358 |
No log | 4.0308 | 262 | 0.3386 | 0.6112 | 0.3387 |
No log | 4.0615 | 264 | 0.3491 | 0.6257 | 0.3493 |
No log | 4.0923 | 266 | 0.3547 | 0.6302 | 0.3549 |
No log | 4.1231 | 268 | 0.3524 | 0.6297 | 0.3526 |
No log | 4.1538 | 270 | 0.3537 | 0.6318 | 0.3539 |
No log | 4.1846 | 272 | 0.3603 | 0.6392 | 0.3605 |
No log | 4.2154 | 274 | 0.3647 | 0.6437 | 0.3648 |
No log | 4.2462 | 276 | 0.3737 | 0.6531 | 0.3739 |
No log | 4.2769 | 278 | 0.3842 | 0.6557 | 0.3843 |
No log | 4.3077 | 280 | 0.3792 | 0.6516 | 0.3793 |
No log | 4.3385 | 282 | 0.3619 | 0.6430 | 0.3620 |
No log | 4.3692 | 284 | 0.3506 | 0.6277 | 0.3507 |
No log | 4.4 | 286 | 0.3455 | 0.6196 | 0.3456 |
No log | 4.4308 | 288 | 0.3404 | 0.6090 | 0.3406 |
No log | 4.4615 | 290 | 0.3431 | 0.6208 | 0.3432 |
No log | 4.4923 | 292 | 0.3528 | 0.6328 | 0.3530 |
No log | 4.5231 | 294 | 0.3631 | 0.6357 | 0.3632 |
No log | 4.5538 | 296 | 0.3687 | 0.6398 | 0.3688 |
No log | 4.5846 | 298 | 0.3757 | 0.6438 | 0.3758 |
No log | 4.6154 | 300 | 0.3844 | 0.6506 | 0.3845 |
No log | 4.6462 | 302 | 0.3922 | 0.6574 | 0.3923 |
No log | 4.6769 | 304 | 0.3932 | 0.6448 | 0.3933 |
No log | 4.7077 | 306 | 0.3882 | 0.6454 | 0.3883 |
No log | 4.7385 | 308 | 0.3828 | 0.6449 | 0.3829 |
No log | 4.7692 | 310 | 0.3753 | 0.6439 | 0.3754 |
No log | 4.8 | 312 | 0.3721 | 0.6439 | 0.3722 |
No log | 4.8308 | 314 | 0.3707 | 0.6418 | 0.3708 |
No log | 4.8615 | 316 | 0.3706 | 0.6418 | 0.3707 |
No log | 4.8923 | 318 | 0.3696 | 0.6439 | 0.3697 |
No log | 4.9231 | 320 | 0.3689 | 0.6439 | 0.3691 |
No log | 4.9538 | 322 | 0.3679 | 0.6476 | 0.3680 |
No log | 4.9846 | 324 | 0.3672 | 0.6476 | 0.3673 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_prompt_adherence_task3_fold4
Base model
google-bert/bert-base-cased