Edit model card

bert_baseline_prompt_adherence_task3_fold4

This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3672
  • Qwk: 0.6476
  • Mse: 0.3673

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0308 2 0.9615 0.1429 0.9616
No log 0.0615 4 0.7862 0.0038 0.7858
No log 0.0923 6 0.6844 0.0 0.6838
No log 0.1231 8 0.6747 0.0 0.6741
No log 0.1538 10 0.6542 0.0 0.6535
No log 0.1846 12 0.6353 0.0 0.6346
No log 0.2154 14 0.6257 0.0 0.6251
No log 0.2462 16 0.6083 0.0 0.6077
No log 0.2769 18 0.5683 0.0 0.5677
No log 0.3077 20 0.5631 0.0087 0.5626
No log 0.3385 22 0.5316 0.0587 0.5312
No log 0.3692 24 0.5169 0.0454 0.5164
No log 0.4 26 0.6864 0.0277 0.6859
No log 0.4308 28 0.7257 0.1009 0.7252
No log 0.4615 30 0.5620 0.4027 0.5615
No log 0.4923 32 0.4296 0.4319 0.4292
No log 0.5231 34 0.4145 0.3748 0.4142
No log 0.5538 36 0.4076 0.4540 0.4073
No log 0.5846 38 0.4092 0.4943 0.4091
No log 0.6154 40 0.4155 0.5085 0.4154
No log 0.6462 42 0.3900 0.4752 0.3899
No log 0.6769 44 0.3908 0.4653 0.3907
No log 0.7077 46 0.3797 0.5278 0.3797
No log 0.7385 48 0.4396 0.5822 0.4395
No log 0.7692 50 0.5112 0.5465 0.5110
No log 0.8 52 0.4901 0.5905 0.4898
No log 0.8308 54 0.4233 0.5483 0.4230
No log 0.8615 56 0.3703 0.5119 0.3701
No log 0.8923 58 0.3680 0.4891 0.3679
No log 0.9231 60 0.3758 0.4994 0.3758
No log 0.9538 62 0.3686 0.5173 0.3687
No log 0.9846 64 0.3553 0.5850 0.3554
No log 1.0154 66 0.3982 0.6446 0.3982
No log 1.0462 68 0.4363 0.6294 0.4363
No log 1.0769 70 0.4614 0.6294 0.4614
No log 1.1077 72 0.3792 0.6388 0.3794
No log 1.1385 74 0.3585 0.5345 0.3588
No log 1.1692 76 0.3653 0.4926 0.3656
No log 1.2 78 0.3399 0.5941 0.3401
No log 1.2308 80 0.3858 0.6290 0.3858
No log 1.2615 82 0.3975 0.6239 0.3974
No log 1.2923 84 0.3774 0.6024 0.3773
No log 1.3231 86 0.3559 0.5760 0.3559
No log 1.3538 88 0.3482 0.5222 0.3483
No log 1.3846 90 0.3434 0.5102 0.3434
No log 1.4154 92 0.3413 0.5185 0.3413
No log 1.4462 94 0.3582 0.5777 0.3580
No log 1.4769 96 0.4007 0.6123 0.4005
No log 1.5077 98 0.4155 0.6218 0.4152
No log 1.5385 100 0.3631 0.6169 0.3631
No log 1.5692 102 0.3270 0.5561 0.3272
No log 1.6 104 0.3283 0.5718 0.3285
No log 1.6308 106 0.3685 0.6305 0.3685
No log 1.6615 108 0.4489 0.6318 0.4488
No log 1.6923 110 0.4564 0.6312 0.4563
No log 1.7231 112 0.3829 0.6407 0.3829
No log 1.7538 114 0.3263 0.5923 0.3265
No log 1.7846 116 0.3309 0.5543 0.3312
No log 1.8154 118 0.3249 0.5825 0.3250
No log 1.8462 120 0.3435 0.6119 0.3435
No log 1.8769 122 0.4346 0.6258 0.4345
No log 1.9077 124 0.5205 0.6379 0.5201
No log 1.9385 126 0.5314 0.6348 0.5311
No log 1.9692 128 0.4719 0.6443 0.4717
No log 2.0 130 0.3841 0.6266 0.3840
No log 2.0308 132 0.3337 0.5746 0.3337
No log 2.0615 134 0.3699 0.4733 0.3700
No log 2.0923 136 0.3926 0.4274 0.3928
No log 2.1231 138 0.3637 0.4600 0.3639
No log 2.1538 140 0.3353 0.5317 0.3354
No log 2.1846 142 0.3592 0.5948 0.3591
No log 2.2154 144 0.3889 0.6171 0.3888
No log 2.2462 146 0.3890 0.6239 0.3889
No log 2.2769 148 0.3593 0.6240 0.3593
No log 2.3077 150 0.3409 0.6086 0.3410
No log 2.3385 152 0.3386 0.5812 0.3387
No log 2.3692 154 0.3416 0.5988 0.3417
No log 2.4 156 0.3500 0.6069 0.3500
No log 2.4308 158 0.3473 0.5999 0.3474
No log 2.4615 160 0.3635 0.6239 0.3635
No log 2.4923 162 0.3797 0.6424 0.3796
No log 2.5231 164 0.3800 0.6418 0.3800
No log 2.5538 166 0.3826 0.6463 0.3827
No log 2.5846 168 0.3477 0.6192 0.3479
No log 2.6154 170 0.3348 0.5882 0.3350
No log 2.6462 172 0.3317 0.5717 0.3318
No log 2.6769 174 0.3416 0.5885 0.3416
No log 2.7077 176 0.3816 0.5900 0.3815
No log 2.7385 178 0.4602 0.6362 0.4601
No log 2.7692 180 0.4794 0.6460 0.4793
No log 2.8 182 0.4356 0.6327 0.4354
No log 2.8308 184 0.3822 0.6207 0.3822
No log 2.8615 186 0.3481 0.6257 0.3482
No log 2.8923 188 0.3499 0.6358 0.3500
No log 2.9231 190 0.3737 0.6458 0.3739
No log 2.9538 192 0.3877 0.6515 0.3879
No log 2.9846 194 0.4120 0.6824 0.4121
No log 3.0154 196 0.4185 0.6528 0.4186
No log 3.0462 198 0.4191 0.6368 0.4191
No log 3.0769 200 0.3750 0.6447 0.3751
No log 3.1077 202 0.3520 0.6394 0.3521
No log 3.1385 204 0.3416 0.6069 0.3417
No log 3.1692 206 0.3451 0.6084 0.3451
No log 3.2 208 0.3505 0.6130 0.3505
No log 3.2308 210 0.3410 0.5970 0.3411
No log 3.2615 212 0.3320 0.5733 0.3321
No log 3.2923 214 0.3347 0.5757 0.3348
No log 3.3231 216 0.3565 0.6142 0.3565
No log 3.3538 218 0.3948 0.6357 0.3948
No log 3.3846 220 0.4004 0.6454 0.4004
No log 3.4154 222 0.3671 0.6277 0.3672
No log 3.4462 224 0.3385 0.5896 0.3387
No log 3.4769 226 0.3378 0.5551 0.3380
No log 3.5077 228 0.3388 0.5810 0.3391
No log 3.5385 230 0.3547 0.6271 0.3549
No log 3.5692 232 0.3822 0.6452 0.3823
No log 3.6 234 0.3794 0.6401 0.3795
No log 3.6308 236 0.3584 0.6388 0.3585
No log 3.6615 238 0.3366 0.6063 0.3368
No log 3.6923 240 0.3337 0.6033 0.3339
No log 3.7231 242 0.3443 0.6309 0.3445
No log 3.7538 244 0.3600 0.6476 0.3601
No log 3.7846 246 0.3946 0.6493 0.3946
No log 3.8154 248 0.4118 0.6646 0.4118
No log 3.8462 250 0.3983 0.6572 0.3984
No log 3.8769 252 0.3868 0.6631 0.3869
No log 3.9077 254 0.3689 0.6476 0.3691
No log 3.9385 256 0.3520 0.6317 0.3522
No log 3.9692 258 0.3393 0.6187 0.3395
No log 4.0 260 0.3356 0.6003 0.3358
No log 4.0308 262 0.3386 0.6112 0.3387
No log 4.0615 264 0.3491 0.6257 0.3493
No log 4.0923 266 0.3547 0.6302 0.3549
No log 4.1231 268 0.3524 0.6297 0.3526
No log 4.1538 270 0.3537 0.6318 0.3539
No log 4.1846 272 0.3603 0.6392 0.3605
No log 4.2154 274 0.3647 0.6437 0.3648
No log 4.2462 276 0.3737 0.6531 0.3739
No log 4.2769 278 0.3842 0.6557 0.3843
No log 4.3077 280 0.3792 0.6516 0.3793
No log 4.3385 282 0.3619 0.6430 0.3620
No log 4.3692 284 0.3506 0.6277 0.3507
No log 4.4 286 0.3455 0.6196 0.3456
No log 4.4308 288 0.3404 0.6090 0.3406
No log 4.4615 290 0.3431 0.6208 0.3432
No log 4.4923 292 0.3528 0.6328 0.3530
No log 4.5231 294 0.3631 0.6357 0.3632
No log 4.5538 296 0.3687 0.6398 0.3688
No log 4.5846 298 0.3757 0.6438 0.3758
No log 4.6154 300 0.3844 0.6506 0.3845
No log 4.6462 302 0.3922 0.6574 0.3923
No log 4.6769 304 0.3932 0.6448 0.3933
No log 4.7077 306 0.3882 0.6454 0.3883
No log 4.7385 308 0.3828 0.6449 0.3829
No log 4.7692 310 0.3753 0.6439 0.3754
No log 4.8 312 0.3721 0.6439 0.3722
No log 4.8308 314 0.3707 0.6418 0.3708
No log 4.8615 316 0.3706 0.6418 0.3707
No log 4.8923 318 0.3696 0.6439 0.3697
No log 4.9231 320 0.3689 0.6439 0.3691
No log 4.9538 322 0.3679 0.6476 0.3680
No log 4.9846 324 0.3672 0.6476 0.3673

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/bert_baseline_prompt_adherence_task3_fold4

Finetuned
(1906)
this model