bert_baseline_prompt_adherence_task4_fold0
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3003
- Qwk: 0.7143
- Mse: 0.3003
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0299 | 2 | 0.7952 | 0.0 | 0.7952 |
No log | 0.0597 | 4 | 0.7435 | 0.3575 | 0.7435 |
No log | 0.0896 | 6 | 0.7053 | 0.3949 | 0.7053 |
No log | 0.1194 | 8 | 0.6544 | 0.4134 | 0.6544 |
No log | 0.1493 | 10 | 0.5985 | 0.3962 | 0.5985 |
No log | 0.1791 | 12 | 0.5456 | 0.3886 | 0.5456 |
No log | 0.2090 | 14 | 0.4624 | 0.4085 | 0.4624 |
No log | 0.2388 | 16 | 0.4188 | 0.4256 | 0.4188 |
No log | 0.2687 | 18 | 0.4127 | 0.4472 | 0.4127 |
No log | 0.2985 | 20 | 0.4097 | 0.5714 | 0.4097 |
No log | 0.3284 | 22 | 0.4263 | 0.5304 | 0.4263 |
No log | 0.3582 | 24 | 0.4263 | 0.6013 | 0.4263 |
No log | 0.3881 | 26 | 0.4291 | 0.5266 | 0.4291 |
No log | 0.4179 | 28 | 0.4956 | 0.3821 | 0.4956 |
No log | 0.4478 | 30 | 0.6276 | 0.2358 | 0.6276 |
No log | 0.4776 | 32 | 0.5191 | 0.3424 | 0.5191 |
No log | 0.5075 | 34 | 0.3886 | 0.5796 | 0.3886 |
No log | 0.5373 | 36 | 0.4471 | 0.6587 | 0.4471 |
No log | 0.5672 | 38 | 0.5216 | 0.6841 | 0.5216 |
No log | 0.5970 | 40 | 0.4964 | 0.6996 | 0.4964 |
No log | 0.6269 | 42 | 0.3933 | 0.6059 | 0.3933 |
No log | 0.6567 | 44 | 0.4005 | 0.4346 | 0.4005 |
No log | 0.6866 | 46 | 0.4494 | 0.3723 | 0.4494 |
No log | 0.7164 | 48 | 0.3869 | 0.4336 | 0.3869 |
No log | 0.7463 | 50 | 0.3519 | 0.5492 | 0.3519 |
No log | 0.7761 | 52 | 0.4054 | 0.6456 | 0.4054 |
No log | 0.8060 | 54 | 0.4709 | 0.7091 | 0.4709 |
No log | 0.8358 | 56 | 0.4444 | 0.6518 | 0.4444 |
No log | 0.8657 | 58 | 0.3970 | 0.4904 | 0.3970 |
No log | 0.8955 | 60 | 0.3593 | 0.5019 | 0.3593 |
No log | 0.9254 | 62 | 0.3568 | 0.4829 | 0.3568 |
No log | 0.9552 | 64 | 0.3636 | 0.4542 | 0.3636 |
No log | 0.9851 | 66 | 0.3443 | 0.5208 | 0.3443 |
No log | 1.0149 | 68 | 0.3360 | 0.5808 | 0.3360 |
No log | 1.0448 | 70 | 0.3498 | 0.6348 | 0.3498 |
No log | 1.0746 | 72 | 0.3605 | 0.6239 | 0.3605 |
No log | 1.1045 | 74 | 0.3729 | 0.6362 | 0.3729 |
No log | 1.1343 | 76 | 0.3536 | 0.6271 | 0.3536 |
No log | 1.1642 | 78 | 0.3291 | 0.6195 | 0.3291 |
No log | 1.1940 | 80 | 0.3167 | 0.6019 | 0.3167 |
No log | 1.2239 | 82 | 0.3308 | 0.5436 | 0.3308 |
No log | 1.2537 | 84 | 0.3383 | 0.5374 | 0.3383 |
No log | 1.2836 | 86 | 0.3108 | 0.6019 | 0.3108 |
No log | 1.3134 | 88 | 0.3449 | 0.6889 | 0.3449 |
No log | 1.3433 | 90 | 0.4016 | 0.7462 | 0.4016 |
No log | 1.3731 | 92 | 0.3671 | 0.7226 | 0.3671 |
No log | 1.4030 | 94 | 0.3511 | 0.7169 | 0.3511 |
No log | 1.4328 | 96 | 0.3221 | 0.6724 | 0.3221 |
No log | 1.4627 | 98 | 0.2964 | 0.6058 | 0.2964 |
No log | 1.4925 | 100 | 0.2981 | 0.5979 | 0.2981 |
No log | 1.5224 | 102 | 0.3050 | 0.6132 | 0.3050 |
No log | 1.5522 | 104 | 0.3045 | 0.6214 | 0.3045 |
No log | 1.5821 | 106 | 0.3029 | 0.6459 | 0.3029 |
No log | 1.6119 | 108 | 0.3022 | 0.6669 | 0.3022 |
No log | 1.6418 | 110 | 0.2957 | 0.6397 | 0.2957 |
No log | 1.6716 | 112 | 0.2978 | 0.6661 | 0.2978 |
No log | 1.7015 | 114 | 0.3018 | 0.6485 | 0.3018 |
No log | 1.7313 | 116 | 0.3019 | 0.6521 | 0.3019 |
No log | 1.7612 | 118 | 0.3064 | 0.6531 | 0.3064 |
No log | 1.7910 | 120 | 0.3164 | 0.6743 | 0.3164 |
No log | 1.8209 | 122 | 0.3017 | 0.6465 | 0.3017 |
No log | 1.8507 | 124 | 0.2939 | 0.6006 | 0.2939 |
No log | 1.8806 | 126 | 0.2929 | 0.5983 | 0.2929 |
No log | 1.9104 | 128 | 0.2938 | 0.5894 | 0.2938 |
No log | 1.9403 | 130 | 0.3015 | 0.6450 | 0.3015 |
No log | 1.9701 | 132 | 0.3092 | 0.6608 | 0.3092 |
No log | 2.0 | 134 | 0.3040 | 0.6349 | 0.3040 |
No log | 2.0299 | 136 | 0.3100 | 0.6394 | 0.3100 |
No log | 2.0597 | 138 | 0.3164 | 0.6438 | 0.3164 |
No log | 2.0896 | 140 | 0.3273 | 0.6548 | 0.3273 |
No log | 2.1194 | 142 | 0.3369 | 0.6855 | 0.3369 |
No log | 2.1493 | 144 | 0.3592 | 0.7197 | 0.3592 |
No log | 2.1791 | 146 | 0.3491 | 0.7110 | 0.3491 |
No log | 2.2090 | 148 | 0.3040 | 0.6737 | 0.3040 |
No log | 2.2388 | 150 | 0.2965 | 0.6074 | 0.2965 |
No log | 2.2687 | 152 | 0.2892 | 0.6008 | 0.2892 |
No log | 2.2985 | 154 | 0.2845 | 0.6733 | 0.2845 |
No log | 2.3284 | 156 | 0.3246 | 0.7050 | 0.3246 |
No log | 2.3582 | 158 | 0.3523 | 0.7290 | 0.3523 |
No log | 2.3881 | 160 | 0.3397 | 0.7298 | 0.3397 |
No log | 2.4179 | 162 | 0.2967 | 0.6931 | 0.2967 |
No log | 2.4478 | 164 | 0.2785 | 0.6576 | 0.2785 |
No log | 2.4776 | 166 | 0.2796 | 0.6046 | 0.2796 |
No log | 2.5075 | 168 | 0.2756 | 0.6642 | 0.2756 |
No log | 2.5373 | 170 | 0.2917 | 0.6973 | 0.2917 |
No log | 2.5672 | 172 | 0.3035 | 0.6955 | 0.3035 |
No log | 2.5970 | 174 | 0.2965 | 0.6872 | 0.2965 |
No log | 2.6269 | 176 | 0.2904 | 0.6676 | 0.2904 |
No log | 2.6567 | 178 | 0.2918 | 0.6502 | 0.2918 |
No log | 2.6866 | 180 | 0.3002 | 0.6610 | 0.3002 |
No log | 2.7164 | 182 | 0.3036 | 0.6775 | 0.3036 |
No log | 2.7463 | 184 | 0.3151 | 0.6946 | 0.3151 |
No log | 2.7761 | 186 | 0.3025 | 0.6801 | 0.3025 |
No log | 2.8060 | 188 | 0.3016 | 0.6816 | 0.3016 |
No log | 2.8358 | 190 | 0.2948 | 0.6867 | 0.2948 |
No log | 2.8657 | 192 | 0.2884 | 0.6840 | 0.2884 |
No log | 2.8955 | 194 | 0.2901 | 0.6984 | 0.2901 |
No log | 2.9254 | 196 | 0.3161 | 0.7266 | 0.3161 |
No log | 2.9552 | 198 | 0.3314 | 0.7278 | 0.3314 |
No log | 2.9851 | 200 | 0.3599 | 0.7395 | 0.3599 |
No log | 3.0149 | 202 | 0.3500 | 0.7368 | 0.3500 |
No log | 3.0448 | 204 | 0.3247 | 0.7195 | 0.3247 |
No log | 3.0746 | 206 | 0.3046 | 0.7171 | 0.3046 |
No log | 3.1045 | 208 | 0.2992 | 0.7107 | 0.2992 |
No log | 3.1343 | 210 | 0.2817 | 0.7049 | 0.2817 |
No log | 3.1642 | 212 | 0.2759 | 0.6988 | 0.2759 |
No log | 3.1940 | 214 | 0.2821 | 0.7083 | 0.2821 |
No log | 3.2239 | 216 | 0.2785 | 0.6974 | 0.2785 |
No log | 3.2537 | 218 | 0.2878 | 0.7076 | 0.2878 |
No log | 3.2836 | 220 | 0.2989 | 0.7212 | 0.2989 |
No log | 3.3134 | 222 | 0.3215 | 0.7382 | 0.3215 |
No log | 3.3433 | 224 | 0.3473 | 0.7553 | 0.3473 |
No log | 3.3731 | 226 | 0.3441 | 0.7540 | 0.3441 |
No log | 3.4030 | 228 | 0.3073 | 0.7378 | 0.3073 |
No log | 3.4328 | 230 | 0.2796 | 0.7068 | 0.2796 |
No log | 3.4627 | 232 | 0.2775 | 0.6960 | 0.2775 |
No log | 3.4925 | 234 | 0.2900 | 0.7158 | 0.2900 |
No log | 3.5224 | 236 | 0.3353 | 0.7499 | 0.3353 |
No log | 3.5522 | 238 | 0.4133 | 0.7759 | 0.4133 |
No log | 3.5821 | 240 | 0.4417 | 0.7765 | 0.4417 |
No log | 3.6119 | 242 | 0.4043 | 0.7724 | 0.4043 |
No log | 3.6418 | 244 | 0.3376 | 0.7508 | 0.3376 |
No log | 3.6716 | 246 | 0.3091 | 0.7164 | 0.3091 |
No log | 3.7015 | 248 | 0.2933 | 0.6959 | 0.2933 |
No log | 3.7313 | 250 | 0.2880 | 0.6747 | 0.2880 |
No log | 3.7612 | 252 | 0.2898 | 0.6758 | 0.2898 |
No log | 3.7910 | 254 | 0.2904 | 0.6816 | 0.2904 |
No log | 3.8209 | 256 | 0.2909 | 0.7010 | 0.2909 |
No log | 3.8507 | 258 | 0.2929 | 0.7023 | 0.2929 |
No log | 3.8806 | 260 | 0.3070 | 0.7026 | 0.3070 |
No log | 3.9104 | 262 | 0.3139 | 0.7200 | 0.3139 |
No log | 3.9403 | 264 | 0.3030 | 0.7028 | 0.3030 |
No log | 3.9701 | 266 | 0.2921 | 0.7048 | 0.2921 |
No log | 4.0 | 268 | 0.2786 | 0.6411 | 0.2786 |
No log | 4.0299 | 270 | 0.2752 | 0.6357 | 0.2752 |
No log | 4.0597 | 272 | 0.2739 | 0.6296 | 0.2739 |
No log | 4.0896 | 274 | 0.2724 | 0.6530 | 0.2724 |
No log | 4.1194 | 276 | 0.2777 | 0.6781 | 0.2777 |
No log | 4.1493 | 278 | 0.2886 | 0.7044 | 0.2886 |
No log | 4.1791 | 280 | 0.3133 | 0.7272 | 0.3133 |
No log | 4.2090 | 282 | 0.3412 | 0.7456 | 0.3412 |
No log | 4.2388 | 284 | 0.3478 | 0.7527 | 0.3478 |
No log | 4.2687 | 286 | 0.3332 | 0.7504 | 0.3332 |
No log | 4.2985 | 288 | 0.3087 | 0.7299 | 0.3087 |
No log | 4.3284 | 290 | 0.2869 | 0.7150 | 0.2869 |
No log | 4.3582 | 292 | 0.2768 | 0.6985 | 0.2768 |
No log | 4.3881 | 294 | 0.2740 | 0.6927 | 0.2740 |
No log | 4.4179 | 296 | 0.2755 | 0.6952 | 0.2755 |
No log | 4.4478 | 298 | 0.2784 | 0.6986 | 0.2784 |
No log | 4.4776 | 300 | 0.2836 | 0.7007 | 0.2836 |
No log | 4.5075 | 302 | 0.2915 | 0.7084 | 0.2915 |
No log | 4.5373 | 304 | 0.3019 | 0.7267 | 0.3019 |
No log | 4.5672 | 306 | 0.3137 | 0.7308 | 0.3137 |
No log | 4.5970 | 308 | 0.3236 | 0.7425 | 0.3236 |
No log | 4.6269 | 310 | 0.3293 | 0.7447 | 0.3293 |
No log | 4.6567 | 312 | 0.3275 | 0.7447 | 0.3275 |
No log | 4.6866 | 314 | 0.3257 | 0.7426 | 0.3257 |
No log | 4.7164 | 316 | 0.3203 | 0.7425 | 0.3203 |
No log | 4.7463 | 318 | 0.3120 | 0.7280 | 0.3120 |
No log | 4.7761 | 320 | 0.3042 | 0.7199 | 0.3042 |
No log | 4.8060 | 322 | 0.2997 | 0.7143 | 0.2997 |
No log | 4.8358 | 324 | 0.2988 | 0.7143 | 0.2988 |
No log | 4.8657 | 326 | 0.2990 | 0.7143 | 0.2990 |
No log | 4.8955 | 328 | 0.3002 | 0.7143 | 0.3002 |
No log | 4.9254 | 330 | 0.3006 | 0.7143 | 0.3006 |
No log | 4.9552 | 332 | 0.3004 | 0.7143 | 0.3004 |
No log | 4.9851 | 334 | 0.3003 | 0.7143 | 0.3003 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_prompt_adherence_task4_fold0
Base model
google-bert/bert-base-cased