salbatarni's picture
End of training
f59bf71 verified
---
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert_baseline_prompt_adherence_task4_fold2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_baseline_prompt_adherence_task4_fold2
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3619
- Qwk: 0.6718
- Mse: 0.3642
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.0299 | 2 | 1.6150 | 0.0 | 1.6151 |
| No log | 0.0597 | 4 | 1.1131 | 0.0 | 1.1127 |
| No log | 0.0896 | 6 | 0.9923 | 0.0 | 0.9917 |
| No log | 0.1194 | 8 | 0.8764 | 0.0931 | 0.8757 |
| No log | 0.1493 | 10 | 0.7878 | 0.3258 | 0.7870 |
| No log | 0.1791 | 12 | 0.7017 | 0.3282 | 0.7009 |
| No log | 0.2090 | 14 | 0.6637 | 0.3119 | 0.6629 |
| No log | 0.2388 | 16 | 0.6324 | 0.3554 | 0.6317 |
| No log | 0.2687 | 18 | 0.7643 | 0.2593 | 0.7637 |
| No log | 0.2985 | 20 | 0.6080 | 0.3281 | 0.6076 |
| No log | 0.3284 | 22 | 0.5178 | 0.3875 | 0.5177 |
| No log | 0.3582 | 24 | 0.5524 | 0.3591 | 0.5525 |
| No log | 0.3881 | 26 | 0.5475 | 0.3552 | 0.5478 |
| No log | 0.4179 | 28 | 0.4919 | 0.3781 | 0.4925 |
| No log | 0.4478 | 30 | 0.5056 | 0.3505 | 0.5060 |
| No log | 0.4776 | 32 | 0.5090 | 0.3430 | 0.5097 |
| No log | 0.5075 | 34 | 0.4966 | 0.4605 | 0.4976 |
| No log | 0.5373 | 36 | 0.5050 | 0.5425 | 0.5062 |
| No log | 0.5672 | 38 | 0.5247 | 0.6176 | 0.5262 |
| No log | 0.5970 | 40 | 0.5400 | 0.6151 | 0.5417 |
| No log | 0.6269 | 42 | 0.5638 | 0.5715 | 0.5656 |
| No log | 0.6567 | 44 | 0.5227 | 0.5910 | 0.5246 |
| No log | 0.6866 | 46 | 0.5162 | 0.6358 | 0.5182 |
| No log | 0.7164 | 48 | 0.5014 | 0.6362 | 0.5034 |
| No log | 0.7463 | 50 | 0.4957 | 0.6499 | 0.4976 |
| No log | 0.7761 | 52 | 0.4510 | 0.6120 | 0.4528 |
| No log | 0.8060 | 54 | 0.4435 | 0.4895 | 0.4450 |
| No log | 0.8358 | 56 | 0.4428 | 0.4449 | 0.4440 |
| No log | 0.8657 | 58 | 0.4246 | 0.5098 | 0.4260 |
| No log | 0.8955 | 60 | 0.4176 | 0.5447 | 0.4191 |
| No log | 0.9254 | 62 | 0.4144 | 0.5936 | 0.4160 |
| No log | 0.9552 | 64 | 0.4111 | 0.6017 | 0.4127 |
| No log | 0.9851 | 66 | 0.4215 | 0.5073 | 0.4229 |
| No log | 1.0149 | 68 | 0.4799 | 0.3889 | 0.4809 |
| No log | 1.0448 | 70 | 0.4582 | 0.4065 | 0.4593 |
| No log | 1.0746 | 72 | 0.3961 | 0.5408 | 0.3976 |
| No log | 1.1045 | 74 | 0.3860 | 0.5622 | 0.3876 |
| No log | 1.1343 | 76 | 0.3850 | 0.5397 | 0.3865 |
| No log | 1.1642 | 78 | 0.3971 | 0.4816 | 0.3985 |
| No log | 1.1940 | 80 | 0.4177 | 0.4745 | 0.4191 |
| No log | 1.2239 | 82 | 0.4110 | 0.5098 | 0.4126 |
| No log | 1.2537 | 84 | 0.3889 | 0.5834 | 0.3906 |
| No log | 1.2836 | 86 | 0.3825 | 0.6343 | 0.3843 |
| No log | 1.3134 | 88 | 0.3983 | 0.6735 | 0.4000 |
| No log | 1.3433 | 90 | 0.3892 | 0.6564 | 0.3910 |
| No log | 1.3731 | 92 | 0.4124 | 0.5726 | 0.4143 |
| No log | 1.4030 | 94 | 0.4329 | 0.5433 | 0.4347 |
| No log | 1.4328 | 96 | 0.3962 | 0.5530 | 0.3982 |
| No log | 1.4627 | 98 | 0.3875 | 0.5613 | 0.3895 |
| No log | 1.4925 | 100 | 0.3712 | 0.6099 | 0.3733 |
| No log | 1.5224 | 102 | 0.3695 | 0.6647 | 0.3719 |
| No log | 1.5522 | 104 | 0.3651 | 0.6477 | 0.3675 |
| No log | 1.5821 | 106 | 0.3638 | 0.6590 | 0.3662 |
| No log | 1.6119 | 108 | 0.3697 | 0.6664 | 0.3723 |
| No log | 1.6418 | 110 | 0.3732 | 0.6626 | 0.3759 |
| No log | 1.6716 | 112 | 0.3828 | 0.6856 | 0.3856 |
| No log | 1.7015 | 114 | 0.4137 | 0.7194 | 0.4164 |
| No log | 1.7313 | 116 | 0.3987 | 0.7078 | 0.4015 |
| No log | 1.7612 | 118 | 0.3763 | 0.6479 | 0.3790 |
| No log | 1.7910 | 120 | 0.4326 | 0.5145 | 0.4345 |
| No log | 1.8209 | 122 | 0.4430 | 0.4898 | 0.4446 |
| No log | 1.8507 | 124 | 0.3836 | 0.5850 | 0.3858 |
| No log | 1.8806 | 126 | 0.3662 | 0.6777 | 0.3690 |
| No log | 1.9104 | 128 | 0.3657 | 0.6847 | 0.3686 |
| No log | 1.9403 | 130 | 0.3716 | 0.6916 | 0.3745 |
| No log | 1.9701 | 132 | 0.3571 | 0.6809 | 0.3597 |
| No log | 2.0 | 134 | 0.3441 | 0.6243 | 0.3461 |
| No log | 2.0299 | 136 | 0.3643 | 0.5408 | 0.3658 |
| No log | 2.0597 | 138 | 0.3673 | 0.5518 | 0.3688 |
| No log | 2.0896 | 140 | 0.3785 | 0.5621 | 0.3801 |
| No log | 2.1194 | 142 | 0.3667 | 0.5927 | 0.3684 |
| No log | 2.1493 | 144 | 0.3548 | 0.6597 | 0.3568 |
| No log | 2.1791 | 146 | 0.3561 | 0.6778 | 0.3583 |
| No log | 2.2090 | 148 | 0.3534 | 0.6716 | 0.3554 |
| No log | 2.2388 | 150 | 0.3540 | 0.6743 | 0.3560 |
| No log | 2.2687 | 152 | 0.3537 | 0.6544 | 0.3555 |
| No log | 2.2985 | 154 | 0.3533 | 0.6431 | 0.3550 |
| No log | 2.3284 | 156 | 0.3628 | 0.6787 | 0.3651 |
| No log | 2.3582 | 158 | 0.3772 | 0.6896 | 0.3799 |
| No log | 2.3881 | 160 | 0.3757 | 0.6716 | 0.3785 |
| No log | 2.4179 | 162 | 0.3721 | 0.6471 | 0.3745 |
| No log | 2.4478 | 164 | 0.3928 | 0.5908 | 0.3947 |
| No log | 2.4776 | 166 | 0.3910 | 0.5933 | 0.3928 |
| No log | 2.5075 | 168 | 0.3730 | 0.6497 | 0.3753 |
| No log | 2.5373 | 170 | 0.3663 | 0.6622 | 0.3689 |
| No log | 2.5672 | 172 | 0.3630 | 0.6852 | 0.3658 |
| No log | 2.5970 | 174 | 0.3529 | 0.6644 | 0.3554 |
| No log | 2.6269 | 176 | 0.3522 | 0.6532 | 0.3543 |
| No log | 2.6567 | 178 | 0.3531 | 0.6474 | 0.3552 |
| No log | 2.6866 | 180 | 0.3544 | 0.6314 | 0.3565 |
| No log | 2.7164 | 182 | 0.3551 | 0.6349 | 0.3573 |
| No log | 2.7463 | 184 | 0.3573 | 0.6408 | 0.3595 |
| No log | 2.7761 | 186 | 0.3585 | 0.6419 | 0.3607 |
| No log | 2.8060 | 188 | 0.3552 | 0.6452 | 0.3574 |
| No log | 2.8358 | 190 | 0.3526 | 0.6438 | 0.3548 |
| No log | 2.8657 | 192 | 0.3496 | 0.6430 | 0.3517 |
| No log | 2.8955 | 194 | 0.3533 | 0.6347 | 0.3551 |
| No log | 2.9254 | 196 | 0.3628 | 0.6228 | 0.3645 |
| No log | 2.9552 | 198 | 0.3575 | 0.6505 | 0.3596 |
| No log | 2.9851 | 200 | 0.3609 | 0.6649 | 0.3632 |
| No log | 3.0149 | 202 | 0.3745 | 0.6968 | 0.3773 |
| No log | 3.0448 | 204 | 0.3948 | 0.7071 | 0.3979 |
| No log | 3.0746 | 206 | 0.4027 | 0.7042 | 0.4059 |
| No log | 3.1045 | 208 | 0.3964 | 0.7026 | 0.3994 |
| No log | 3.1343 | 210 | 0.3705 | 0.6951 | 0.3730 |
| No log | 3.1642 | 212 | 0.3664 | 0.6148 | 0.3682 |
| No log | 3.1940 | 214 | 0.3754 | 0.5845 | 0.3770 |
| No log | 3.2239 | 216 | 0.3698 | 0.5859 | 0.3713 |
| No log | 3.2537 | 218 | 0.3582 | 0.6089 | 0.3598 |
| No log | 3.2836 | 220 | 0.3515 | 0.6564 | 0.3534 |
| No log | 3.3134 | 222 | 0.3522 | 0.6775 | 0.3543 |
| No log | 3.3433 | 224 | 0.3535 | 0.6820 | 0.3556 |
| No log | 3.3731 | 226 | 0.3554 | 0.6878 | 0.3576 |
| No log | 3.4030 | 228 | 0.3605 | 0.6915 | 0.3630 |
| No log | 3.4328 | 230 | 0.3839 | 0.7020 | 0.3867 |
| No log | 3.4627 | 232 | 0.3961 | 0.7105 | 0.3990 |
| No log | 3.4925 | 234 | 0.3751 | 0.7051 | 0.3778 |
| No log | 3.5224 | 236 | 0.3457 | 0.6892 | 0.3479 |
| No log | 3.5522 | 238 | 0.3464 | 0.6424 | 0.3479 |
| No log | 3.5821 | 240 | 0.3583 | 0.6144 | 0.3597 |
| No log | 3.6119 | 242 | 0.3556 | 0.6319 | 0.3571 |
| No log | 3.6418 | 244 | 0.3514 | 0.6898 | 0.3534 |
| No log | 3.6716 | 246 | 0.3516 | 0.6929 | 0.3537 |
| No log | 3.7015 | 248 | 0.3512 | 0.6900 | 0.3533 |
| No log | 3.7313 | 250 | 0.3522 | 0.6904 | 0.3543 |
| No log | 3.7612 | 252 | 0.3510 | 0.6830 | 0.3530 |
| No log | 3.7910 | 254 | 0.3507 | 0.6780 | 0.3526 |
| No log | 3.8209 | 256 | 0.3612 | 0.6288 | 0.3626 |
| No log | 3.8507 | 258 | 0.3904 | 0.5419 | 0.3914 |
| No log | 3.8806 | 260 | 0.3907 | 0.5404 | 0.3917 |
| No log | 3.9104 | 262 | 0.3671 | 0.5869 | 0.3683 |
| No log | 3.9403 | 264 | 0.3493 | 0.6553 | 0.3510 |
| No log | 3.9701 | 266 | 0.3487 | 0.6782 | 0.3508 |
| No log | 4.0 | 268 | 0.3501 | 0.6847 | 0.3523 |
| No log | 4.0299 | 270 | 0.3476 | 0.6695 | 0.3497 |
| No log | 4.0597 | 272 | 0.3472 | 0.6652 | 0.3490 |
| No log | 4.0896 | 274 | 0.3531 | 0.6503 | 0.3548 |
| No log | 4.1194 | 276 | 0.3593 | 0.6312 | 0.3610 |
| No log | 4.1493 | 278 | 0.3624 | 0.6358 | 0.3641 |
| No log | 4.1791 | 280 | 0.3685 | 0.6320 | 0.3703 |
| No log | 4.2090 | 282 | 0.3659 | 0.6432 | 0.3678 |
| No log | 4.2388 | 284 | 0.3634 | 0.6778 | 0.3657 |
| No log | 4.2687 | 286 | 0.3687 | 0.6865 | 0.3713 |
| No log | 4.2985 | 288 | 0.3752 | 0.6901 | 0.3780 |
| No log | 4.3284 | 290 | 0.3746 | 0.6925 | 0.3774 |
| No log | 4.3582 | 292 | 0.3677 | 0.6883 | 0.3702 |
| No log | 4.3881 | 294 | 0.3627 | 0.6674 | 0.3649 |
| No log | 4.4179 | 296 | 0.3664 | 0.6362 | 0.3683 |
| No log | 4.4478 | 298 | 0.3710 | 0.6230 | 0.3727 |
| No log | 4.4776 | 300 | 0.3702 | 0.6190 | 0.3719 |
| No log | 4.5075 | 302 | 0.3687 | 0.6266 | 0.3704 |
| No log | 4.5373 | 304 | 0.3642 | 0.6383 | 0.3660 |
| No log | 4.5672 | 306 | 0.3607 | 0.6552 | 0.3626 |
| No log | 4.5970 | 308 | 0.3603 | 0.6705 | 0.3625 |
| No log | 4.6269 | 310 | 0.3622 | 0.6824 | 0.3646 |
| No log | 4.6567 | 312 | 0.3636 | 0.6819 | 0.3660 |
| No log | 4.6866 | 314 | 0.3626 | 0.6819 | 0.3650 |
| No log | 4.7164 | 316 | 0.3613 | 0.6799 | 0.3636 |
| No log | 4.7463 | 318 | 0.3606 | 0.6772 | 0.3629 |
| No log | 4.7761 | 320 | 0.3605 | 0.6736 | 0.3627 |
| No log | 4.8060 | 322 | 0.3607 | 0.6665 | 0.3629 |
| No log | 4.8358 | 324 | 0.3607 | 0.6611 | 0.3629 |
| No log | 4.8657 | 326 | 0.3609 | 0.6727 | 0.3630 |
| No log | 4.8955 | 328 | 0.3611 | 0.6736 | 0.3633 |
| No log | 4.9254 | 330 | 0.3615 | 0.6698 | 0.3638 |
| No log | 4.9552 | 332 | 0.3618 | 0.6718 | 0.3641 |
| No log | 4.9851 | 334 | 0.3619 | 0.6718 | 0.3642 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1