bert_baseline_prompt_adherence_task4_fold4
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3584
- Qwk: 0.7661
- Mse: 0.3584
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0299 | 2 | 1.2443 | 0.0 | 1.2443 |
No log | 0.0597 | 4 | 0.9707 | 0.0 | 0.9707 |
No log | 0.0896 | 6 | 0.8255 | 0.3275 | 0.8255 |
No log | 0.1194 | 8 | 0.7870 | 0.3717 | 0.7870 |
No log | 0.1493 | 10 | 0.7604 | 0.3805 | 0.7604 |
No log | 0.1791 | 12 | 0.7414 | 0.3322 | 0.7414 |
No log | 0.2090 | 14 | 0.7169 | 0.3568 | 0.7169 |
No log | 0.2388 | 16 | 0.6759 | 0.3554 | 0.6759 |
No log | 0.2687 | 18 | 0.6392 | 0.3504 | 0.6392 |
No log | 0.2985 | 20 | 0.6005 | 0.3656 | 0.6005 |
No log | 0.3284 | 22 | 0.5749 | 0.3572 | 0.5749 |
No log | 0.3582 | 24 | 0.6085 | 0.3548 | 0.6085 |
No log | 0.3881 | 26 | 0.5712 | 0.3867 | 0.5712 |
No log | 0.4179 | 28 | 0.4782 | 0.4192 | 0.4782 |
No log | 0.4478 | 30 | 0.4704 | 0.3709 | 0.4704 |
No log | 0.4776 | 32 | 0.4817 | 0.3659 | 0.4817 |
No log | 0.5075 | 34 | 0.4440 | 0.4181 | 0.4440 |
No log | 0.5373 | 36 | 0.4484 | 0.4808 | 0.4484 |
No log | 0.5672 | 38 | 0.4278 | 0.6458 | 0.4278 |
No log | 0.5970 | 40 | 0.4117 | 0.5914 | 0.4117 |
No log | 0.6269 | 42 | 0.4057 | 0.5708 | 0.4057 |
No log | 0.6567 | 44 | 0.3990 | 0.6590 | 0.3990 |
No log | 0.6866 | 46 | 0.3990 | 0.6750 | 0.3990 |
No log | 0.7164 | 48 | 0.3870 | 0.6519 | 0.3870 |
No log | 0.7463 | 50 | 0.3799 | 0.6386 | 0.3799 |
No log | 0.7761 | 52 | 0.3939 | 0.7013 | 0.3939 |
No log | 0.8060 | 54 | 0.5031 | 0.7409 | 0.5031 |
No log | 0.8358 | 56 | 0.6553 | 0.7154 | 0.6553 |
No log | 0.8657 | 58 | 0.8023 | 0.6679 | 0.8023 |
No log | 0.8955 | 60 | 0.6686 | 0.7089 | 0.6686 |
No log | 0.9254 | 62 | 0.4643 | 0.6871 | 0.4643 |
No log | 0.9552 | 64 | 0.3993 | 0.5443 | 0.3993 |
No log | 0.9851 | 66 | 0.4001 | 0.4857 | 0.4001 |
No log | 1.0149 | 68 | 0.3614 | 0.5379 | 0.3614 |
No log | 1.0448 | 70 | 0.3637 | 0.6897 | 0.3637 |
No log | 1.0746 | 72 | 0.3844 | 0.7311 | 0.3844 |
No log | 1.1045 | 74 | 0.3574 | 0.6973 | 0.3574 |
No log | 1.1343 | 76 | 0.3401 | 0.6778 | 0.3401 |
No log | 1.1642 | 78 | 0.3395 | 0.6981 | 0.3395 |
No log | 1.1940 | 80 | 0.3617 | 0.7317 | 0.3617 |
No log | 1.2239 | 82 | 0.3786 | 0.7466 | 0.3786 |
No log | 1.2537 | 84 | 0.3423 | 0.7234 | 0.3423 |
No log | 1.2836 | 86 | 0.3218 | 0.6556 | 0.3218 |
No log | 1.3134 | 88 | 0.3278 | 0.6166 | 0.3278 |
No log | 1.3433 | 90 | 0.3505 | 0.5513 | 0.3505 |
No log | 1.3731 | 92 | 0.3330 | 0.5929 | 0.3330 |
No log | 1.4030 | 94 | 0.3197 | 0.6819 | 0.3197 |
No log | 1.4328 | 96 | 0.3346 | 0.7089 | 0.3346 |
No log | 1.4627 | 98 | 0.3389 | 0.7312 | 0.3389 |
No log | 1.4925 | 100 | 0.3203 | 0.7106 | 0.3203 |
No log | 1.5224 | 102 | 0.3314 | 0.7252 | 0.3314 |
No log | 1.5522 | 104 | 0.3731 | 0.7459 | 0.3731 |
No log | 1.5821 | 106 | 0.3357 | 0.7275 | 0.3357 |
No log | 1.6119 | 108 | 0.3198 | 0.6921 | 0.3198 |
No log | 1.6418 | 110 | 0.3098 | 0.6386 | 0.3098 |
No log | 1.6716 | 112 | 0.3157 | 0.6932 | 0.3157 |
No log | 1.7015 | 114 | 0.3673 | 0.7532 | 0.3673 |
No log | 1.7313 | 116 | 0.3748 | 0.7573 | 0.3748 |
No log | 1.7612 | 118 | 0.3899 | 0.7593 | 0.3899 |
No log | 1.7910 | 120 | 0.3975 | 0.7575 | 0.3975 |
No log | 1.8209 | 122 | 0.3556 | 0.7447 | 0.3556 |
No log | 1.8507 | 124 | 0.3253 | 0.6647 | 0.3253 |
No log | 1.8806 | 126 | 0.3533 | 0.5111 | 0.3533 |
No log | 1.9104 | 128 | 0.3439 | 0.5285 | 0.3439 |
No log | 1.9403 | 130 | 0.3254 | 0.6668 | 0.3254 |
No log | 1.9701 | 132 | 0.3701 | 0.7315 | 0.3701 |
No log | 2.0 | 134 | 0.4611 | 0.7495 | 0.4611 |
No log | 2.0299 | 136 | 0.5215 | 0.7473 | 0.5215 |
No log | 2.0597 | 138 | 0.4775 | 0.7629 | 0.4775 |
No log | 2.0896 | 140 | 0.3735 | 0.7431 | 0.3735 |
No log | 2.1194 | 142 | 0.3063 | 0.7134 | 0.3063 |
No log | 2.1493 | 144 | 0.2971 | 0.6687 | 0.2971 |
No log | 2.1791 | 146 | 0.2961 | 0.6860 | 0.2961 |
No log | 2.2090 | 148 | 0.3076 | 0.7257 | 0.3076 |
No log | 2.2388 | 150 | 0.3181 | 0.7335 | 0.3181 |
No log | 2.2687 | 152 | 0.3115 | 0.7324 | 0.3115 |
No log | 2.2985 | 154 | 0.3106 | 0.7336 | 0.3106 |
No log | 2.3284 | 156 | 0.3062 | 0.7246 | 0.3062 |
No log | 2.3582 | 158 | 0.2957 | 0.7093 | 0.2957 |
No log | 2.3881 | 160 | 0.2906 | 0.6976 | 0.2906 |
No log | 2.4179 | 162 | 0.2893 | 0.6849 | 0.2893 |
No log | 2.4478 | 164 | 0.2949 | 0.7037 | 0.2949 |
No log | 2.4776 | 166 | 0.3165 | 0.7460 | 0.3165 |
No log | 2.5075 | 168 | 0.3729 | 0.7651 | 0.3729 |
No log | 2.5373 | 170 | 0.3809 | 0.7697 | 0.3809 |
No log | 2.5672 | 172 | 0.3709 | 0.7628 | 0.3709 |
No log | 2.5970 | 174 | 0.3413 | 0.7589 | 0.3413 |
No log | 2.6269 | 176 | 0.2959 | 0.7228 | 0.2959 |
No log | 2.6567 | 178 | 0.2837 | 0.6782 | 0.2837 |
No log | 2.6866 | 180 | 0.2888 | 0.7069 | 0.2888 |
No log | 2.7164 | 182 | 0.3101 | 0.7416 | 0.3101 |
No log | 2.7463 | 184 | 0.3048 | 0.7388 | 0.3048 |
No log | 2.7761 | 186 | 0.3104 | 0.7408 | 0.3104 |
No log | 2.8060 | 188 | 0.3197 | 0.7525 | 0.3197 |
No log | 2.8358 | 190 | 0.3004 | 0.7215 | 0.3004 |
No log | 2.8657 | 192 | 0.2988 | 0.7148 | 0.2988 |
No log | 2.8955 | 194 | 0.3121 | 0.7416 | 0.3121 |
No log | 2.9254 | 196 | 0.3250 | 0.7529 | 0.3250 |
No log | 2.9552 | 198 | 0.3176 | 0.7560 | 0.3176 |
No log | 2.9851 | 200 | 0.2903 | 0.7044 | 0.2903 |
No log | 3.0149 | 202 | 0.2847 | 0.6752 | 0.2847 |
No log | 3.0448 | 204 | 0.2875 | 0.6945 | 0.2875 |
No log | 3.0746 | 206 | 0.3199 | 0.7513 | 0.3199 |
No log | 3.1045 | 208 | 0.3502 | 0.7715 | 0.3502 |
No log | 3.1343 | 210 | 0.3315 | 0.7667 | 0.3315 |
No log | 3.1642 | 212 | 0.2976 | 0.7158 | 0.2976 |
No log | 3.1940 | 214 | 0.2918 | 0.6987 | 0.2918 |
No log | 3.2239 | 216 | 0.2976 | 0.7149 | 0.2976 |
No log | 3.2537 | 218 | 0.3126 | 0.7332 | 0.3126 |
No log | 3.2836 | 220 | 0.3172 | 0.7364 | 0.3172 |
No log | 3.3134 | 222 | 0.3281 | 0.7466 | 0.3281 |
No log | 3.3433 | 224 | 0.3377 | 0.7607 | 0.3377 |
No log | 3.3731 | 226 | 0.3158 | 0.7340 | 0.3158 |
No log | 3.4030 | 228 | 0.2957 | 0.7081 | 0.2957 |
No log | 3.4328 | 230 | 0.2992 | 0.7140 | 0.2992 |
No log | 3.4627 | 232 | 0.3063 | 0.7218 | 0.3063 |
No log | 3.4925 | 234 | 0.3184 | 0.7298 | 0.3184 |
No log | 3.5224 | 236 | 0.3368 | 0.7492 | 0.3368 |
No log | 3.5522 | 238 | 0.3361 | 0.7488 | 0.3361 |
No log | 3.5821 | 240 | 0.3091 | 0.7341 | 0.3091 |
No log | 3.6119 | 242 | 0.2903 | 0.7114 | 0.2903 |
No log | 3.6418 | 244 | 0.2887 | 0.7066 | 0.2887 |
No log | 3.6716 | 246 | 0.2996 | 0.7274 | 0.2996 |
No log | 3.7015 | 248 | 0.3100 | 0.7465 | 0.3100 |
No log | 3.7313 | 250 | 0.3222 | 0.7545 | 0.3222 |
No log | 3.7612 | 252 | 0.3362 | 0.7657 | 0.3362 |
No log | 3.7910 | 254 | 0.3708 | 0.7816 | 0.3708 |
No log | 3.8209 | 256 | 0.3823 | 0.7803 | 0.3823 |
No log | 3.8507 | 258 | 0.3711 | 0.7799 | 0.3711 |
No log | 3.8806 | 260 | 0.3283 | 0.7588 | 0.3283 |
No log | 3.9104 | 262 | 0.2906 | 0.7152 | 0.2906 |
No log | 3.9403 | 264 | 0.2818 | 0.6789 | 0.2818 |
No log | 3.9701 | 266 | 0.2853 | 0.6354 | 0.2853 |
No log | 4.0 | 268 | 0.2828 | 0.6511 | 0.2828 |
No log | 4.0299 | 270 | 0.2831 | 0.6897 | 0.2831 |
No log | 4.0597 | 272 | 0.2921 | 0.7002 | 0.2921 |
No log | 4.0896 | 274 | 0.3105 | 0.7367 | 0.3105 |
No log | 4.1194 | 276 | 0.3293 | 0.7447 | 0.3293 |
No log | 4.1493 | 278 | 0.3376 | 0.7589 | 0.3376 |
No log | 4.1791 | 280 | 0.3380 | 0.7617 | 0.3380 |
No log | 4.2090 | 282 | 0.3289 | 0.7531 | 0.3289 |
No log | 4.2388 | 284 | 0.3310 | 0.7580 | 0.3310 |
No log | 4.2687 | 286 | 0.3411 | 0.7673 | 0.3411 |
No log | 4.2985 | 288 | 0.3570 | 0.7693 | 0.3570 |
No log | 4.3284 | 290 | 0.3615 | 0.7713 | 0.3615 |
No log | 4.3582 | 292 | 0.3468 | 0.7754 | 0.3468 |
No log | 4.3881 | 294 | 0.3233 | 0.7388 | 0.3233 |
No log | 4.4179 | 296 | 0.3046 | 0.7277 | 0.3046 |
No log | 4.4478 | 298 | 0.2949 | 0.7194 | 0.2949 |
No log | 4.4776 | 300 | 0.2899 | 0.7098 | 0.2899 |
No log | 4.5075 | 302 | 0.2876 | 0.6944 | 0.2876 |
No log | 4.5373 | 304 | 0.2882 | 0.6944 | 0.2882 |
No log | 4.5672 | 306 | 0.2910 | 0.7098 | 0.2910 |
No log | 4.5970 | 308 | 0.2972 | 0.7173 | 0.2972 |
No log | 4.6269 | 310 | 0.3095 | 0.7307 | 0.3095 |
No log | 4.6567 | 312 | 0.3256 | 0.7388 | 0.3256 |
No log | 4.6866 | 314 | 0.3452 | 0.7578 | 0.3452 |
No log | 4.7164 | 316 | 0.3647 | 0.7688 | 0.3647 |
No log | 4.7463 | 318 | 0.3846 | 0.7727 | 0.3846 |
No log | 4.7761 | 320 | 0.3940 | 0.7746 | 0.3940 |
No log | 4.8060 | 322 | 0.3935 | 0.7746 | 0.3935 |
No log | 4.8358 | 324 | 0.3867 | 0.7674 | 0.3867 |
No log | 4.8657 | 326 | 0.3786 | 0.7635 | 0.3786 |
No log | 4.8955 | 328 | 0.3706 | 0.7674 | 0.3706 |
No log | 4.9254 | 330 | 0.3649 | 0.7647 | 0.3649 |
No log | 4.9552 | 332 | 0.3602 | 0.7661 | 0.3602 |
No log | 4.9851 | 334 | 0.3584 | 0.7661 | 0.3584 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for salbatarni/bert_baseline_prompt_adherence_task4_fold4
Base model
google-bert/bert-base-cased