Edit model card

bert_baseline_prompt_adherence_task4_fold4

This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3584
  • Qwk: 0.7661
  • Mse: 0.3584

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0299 2 1.2443 0.0 1.2443
No log 0.0597 4 0.9707 0.0 0.9707
No log 0.0896 6 0.8255 0.3275 0.8255
No log 0.1194 8 0.7870 0.3717 0.7870
No log 0.1493 10 0.7604 0.3805 0.7604
No log 0.1791 12 0.7414 0.3322 0.7414
No log 0.2090 14 0.7169 0.3568 0.7169
No log 0.2388 16 0.6759 0.3554 0.6759
No log 0.2687 18 0.6392 0.3504 0.6392
No log 0.2985 20 0.6005 0.3656 0.6005
No log 0.3284 22 0.5749 0.3572 0.5749
No log 0.3582 24 0.6085 0.3548 0.6085
No log 0.3881 26 0.5712 0.3867 0.5712
No log 0.4179 28 0.4782 0.4192 0.4782
No log 0.4478 30 0.4704 0.3709 0.4704
No log 0.4776 32 0.4817 0.3659 0.4817
No log 0.5075 34 0.4440 0.4181 0.4440
No log 0.5373 36 0.4484 0.4808 0.4484
No log 0.5672 38 0.4278 0.6458 0.4278
No log 0.5970 40 0.4117 0.5914 0.4117
No log 0.6269 42 0.4057 0.5708 0.4057
No log 0.6567 44 0.3990 0.6590 0.3990
No log 0.6866 46 0.3990 0.6750 0.3990
No log 0.7164 48 0.3870 0.6519 0.3870
No log 0.7463 50 0.3799 0.6386 0.3799
No log 0.7761 52 0.3939 0.7013 0.3939
No log 0.8060 54 0.5031 0.7409 0.5031
No log 0.8358 56 0.6553 0.7154 0.6553
No log 0.8657 58 0.8023 0.6679 0.8023
No log 0.8955 60 0.6686 0.7089 0.6686
No log 0.9254 62 0.4643 0.6871 0.4643
No log 0.9552 64 0.3993 0.5443 0.3993
No log 0.9851 66 0.4001 0.4857 0.4001
No log 1.0149 68 0.3614 0.5379 0.3614
No log 1.0448 70 0.3637 0.6897 0.3637
No log 1.0746 72 0.3844 0.7311 0.3844
No log 1.1045 74 0.3574 0.6973 0.3574
No log 1.1343 76 0.3401 0.6778 0.3401
No log 1.1642 78 0.3395 0.6981 0.3395
No log 1.1940 80 0.3617 0.7317 0.3617
No log 1.2239 82 0.3786 0.7466 0.3786
No log 1.2537 84 0.3423 0.7234 0.3423
No log 1.2836 86 0.3218 0.6556 0.3218
No log 1.3134 88 0.3278 0.6166 0.3278
No log 1.3433 90 0.3505 0.5513 0.3505
No log 1.3731 92 0.3330 0.5929 0.3330
No log 1.4030 94 0.3197 0.6819 0.3197
No log 1.4328 96 0.3346 0.7089 0.3346
No log 1.4627 98 0.3389 0.7312 0.3389
No log 1.4925 100 0.3203 0.7106 0.3203
No log 1.5224 102 0.3314 0.7252 0.3314
No log 1.5522 104 0.3731 0.7459 0.3731
No log 1.5821 106 0.3357 0.7275 0.3357
No log 1.6119 108 0.3198 0.6921 0.3198
No log 1.6418 110 0.3098 0.6386 0.3098
No log 1.6716 112 0.3157 0.6932 0.3157
No log 1.7015 114 0.3673 0.7532 0.3673
No log 1.7313 116 0.3748 0.7573 0.3748
No log 1.7612 118 0.3899 0.7593 0.3899
No log 1.7910 120 0.3975 0.7575 0.3975
No log 1.8209 122 0.3556 0.7447 0.3556
No log 1.8507 124 0.3253 0.6647 0.3253
No log 1.8806 126 0.3533 0.5111 0.3533
No log 1.9104 128 0.3439 0.5285 0.3439
No log 1.9403 130 0.3254 0.6668 0.3254
No log 1.9701 132 0.3701 0.7315 0.3701
No log 2.0 134 0.4611 0.7495 0.4611
No log 2.0299 136 0.5215 0.7473 0.5215
No log 2.0597 138 0.4775 0.7629 0.4775
No log 2.0896 140 0.3735 0.7431 0.3735
No log 2.1194 142 0.3063 0.7134 0.3063
No log 2.1493 144 0.2971 0.6687 0.2971
No log 2.1791 146 0.2961 0.6860 0.2961
No log 2.2090 148 0.3076 0.7257 0.3076
No log 2.2388 150 0.3181 0.7335 0.3181
No log 2.2687 152 0.3115 0.7324 0.3115
No log 2.2985 154 0.3106 0.7336 0.3106
No log 2.3284 156 0.3062 0.7246 0.3062
No log 2.3582 158 0.2957 0.7093 0.2957
No log 2.3881 160 0.2906 0.6976 0.2906
No log 2.4179 162 0.2893 0.6849 0.2893
No log 2.4478 164 0.2949 0.7037 0.2949
No log 2.4776 166 0.3165 0.7460 0.3165
No log 2.5075 168 0.3729 0.7651 0.3729
No log 2.5373 170 0.3809 0.7697 0.3809
No log 2.5672 172 0.3709 0.7628 0.3709
No log 2.5970 174 0.3413 0.7589 0.3413
No log 2.6269 176 0.2959 0.7228 0.2959
No log 2.6567 178 0.2837 0.6782 0.2837
No log 2.6866 180 0.2888 0.7069 0.2888
No log 2.7164 182 0.3101 0.7416 0.3101
No log 2.7463 184 0.3048 0.7388 0.3048
No log 2.7761 186 0.3104 0.7408 0.3104
No log 2.8060 188 0.3197 0.7525 0.3197
No log 2.8358 190 0.3004 0.7215 0.3004
No log 2.8657 192 0.2988 0.7148 0.2988
No log 2.8955 194 0.3121 0.7416 0.3121
No log 2.9254 196 0.3250 0.7529 0.3250
No log 2.9552 198 0.3176 0.7560 0.3176
No log 2.9851 200 0.2903 0.7044 0.2903
No log 3.0149 202 0.2847 0.6752 0.2847
No log 3.0448 204 0.2875 0.6945 0.2875
No log 3.0746 206 0.3199 0.7513 0.3199
No log 3.1045 208 0.3502 0.7715 0.3502
No log 3.1343 210 0.3315 0.7667 0.3315
No log 3.1642 212 0.2976 0.7158 0.2976
No log 3.1940 214 0.2918 0.6987 0.2918
No log 3.2239 216 0.2976 0.7149 0.2976
No log 3.2537 218 0.3126 0.7332 0.3126
No log 3.2836 220 0.3172 0.7364 0.3172
No log 3.3134 222 0.3281 0.7466 0.3281
No log 3.3433 224 0.3377 0.7607 0.3377
No log 3.3731 226 0.3158 0.7340 0.3158
No log 3.4030 228 0.2957 0.7081 0.2957
No log 3.4328 230 0.2992 0.7140 0.2992
No log 3.4627 232 0.3063 0.7218 0.3063
No log 3.4925 234 0.3184 0.7298 0.3184
No log 3.5224 236 0.3368 0.7492 0.3368
No log 3.5522 238 0.3361 0.7488 0.3361
No log 3.5821 240 0.3091 0.7341 0.3091
No log 3.6119 242 0.2903 0.7114 0.2903
No log 3.6418 244 0.2887 0.7066 0.2887
No log 3.6716 246 0.2996 0.7274 0.2996
No log 3.7015 248 0.3100 0.7465 0.3100
No log 3.7313 250 0.3222 0.7545 0.3222
No log 3.7612 252 0.3362 0.7657 0.3362
No log 3.7910 254 0.3708 0.7816 0.3708
No log 3.8209 256 0.3823 0.7803 0.3823
No log 3.8507 258 0.3711 0.7799 0.3711
No log 3.8806 260 0.3283 0.7588 0.3283
No log 3.9104 262 0.2906 0.7152 0.2906
No log 3.9403 264 0.2818 0.6789 0.2818
No log 3.9701 266 0.2853 0.6354 0.2853
No log 4.0 268 0.2828 0.6511 0.2828
No log 4.0299 270 0.2831 0.6897 0.2831
No log 4.0597 272 0.2921 0.7002 0.2921
No log 4.0896 274 0.3105 0.7367 0.3105
No log 4.1194 276 0.3293 0.7447 0.3293
No log 4.1493 278 0.3376 0.7589 0.3376
No log 4.1791 280 0.3380 0.7617 0.3380
No log 4.2090 282 0.3289 0.7531 0.3289
No log 4.2388 284 0.3310 0.7580 0.3310
No log 4.2687 286 0.3411 0.7673 0.3411
No log 4.2985 288 0.3570 0.7693 0.3570
No log 4.3284 290 0.3615 0.7713 0.3615
No log 4.3582 292 0.3468 0.7754 0.3468
No log 4.3881 294 0.3233 0.7388 0.3233
No log 4.4179 296 0.3046 0.7277 0.3046
No log 4.4478 298 0.2949 0.7194 0.2949
No log 4.4776 300 0.2899 0.7098 0.2899
No log 4.5075 302 0.2876 0.6944 0.2876
No log 4.5373 304 0.2882 0.6944 0.2882
No log 4.5672 306 0.2910 0.7098 0.2910
No log 4.5970 308 0.2972 0.7173 0.2972
No log 4.6269 310 0.3095 0.7307 0.3095
No log 4.6567 312 0.3256 0.7388 0.3256
No log 4.6866 314 0.3452 0.7578 0.3452
No log 4.7164 316 0.3647 0.7688 0.3647
No log 4.7463 318 0.3846 0.7727 0.3846
No log 4.7761 320 0.3940 0.7746 0.3940
No log 4.8060 322 0.3935 0.7746 0.3935
No log 4.8358 324 0.3867 0.7674 0.3867
No log 4.8657 326 0.3786 0.7635 0.3786
No log 4.8955 328 0.3706 0.7674 0.3706
No log 4.9254 330 0.3649 0.7647 0.3649
No log 4.9552 332 0.3602 0.7661 0.3602
No log 4.9851 334 0.3584 0.7661 0.3584

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/bert_baseline_prompt_adherence_task4_fold4

Finetuned
(1906)
this model