bert_baseline_prompt_adherence_task5_fold2
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4974
- Qwk: 0.6961
- Mse: 0.4980
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0294 | 2 | 2.2821 | 0.0 | 2.2817 |
No log | 0.0588 | 4 | 1.9470 | -0.0246 | 1.9459 |
No log | 0.0882 | 6 | 1.6364 | 0.0 | 1.6351 |
No log | 0.1176 | 8 | 1.2066 | 0.0 | 1.2052 |
No log | 0.1471 | 10 | 0.9869 | -0.0028 | 0.9857 |
No log | 0.1765 | 12 | 0.8887 | 0.2922 | 0.8874 |
No log | 0.2059 | 14 | 0.8591 | 0.3046 | 0.8578 |
No log | 0.2353 | 16 | 0.8205 | 0.3085 | 0.8194 |
No log | 0.2647 | 18 | 0.7874 | 0.3196 | 0.7865 |
No log | 0.2941 | 20 | 0.7405 | 0.4192 | 0.7398 |
No log | 0.3235 | 22 | 0.7247 | 0.3757 | 0.7242 |
No log | 0.3529 | 24 | 0.6294 | 0.4054 | 0.6292 |
No log | 0.3824 | 26 | 0.6148 | 0.4262 | 0.6148 |
No log | 0.4118 | 28 | 0.6777 | 0.3954 | 0.6778 |
No log | 0.4412 | 30 | 0.7120 | 0.4234 | 0.7120 |
No log | 0.4706 | 32 | 0.6023 | 0.5248 | 0.6026 |
No log | 0.5 | 34 | 0.5625 | 0.5623 | 0.5629 |
No log | 0.5294 | 36 | 0.5273 | 0.4965 | 0.5276 |
No log | 0.5588 | 38 | 0.5054 | 0.5104 | 0.5058 |
No log | 0.5882 | 40 | 0.5157 | 0.6071 | 0.5163 |
No log | 0.6176 | 42 | 0.6802 | 0.6978 | 0.6809 |
No log | 0.6471 | 44 | 0.7500 | 0.6921 | 0.7507 |
No log | 0.6765 | 46 | 0.6160 | 0.7080 | 0.6166 |
No log | 0.7059 | 48 | 0.4815 | 0.6385 | 0.4822 |
No log | 0.7353 | 50 | 0.4729 | 0.5059 | 0.4735 |
No log | 0.7647 | 52 | 0.4612 | 0.5337 | 0.4618 |
No log | 0.7941 | 54 | 0.4666 | 0.5762 | 0.4670 |
No log | 0.8235 | 56 | 0.5076 | 0.6517 | 0.5081 |
No log | 0.8529 | 58 | 0.6052 | 0.7195 | 0.6058 |
No log | 0.8824 | 60 | 0.6030 | 0.7166 | 0.6037 |
No log | 0.9118 | 62 | 0.4870 | 0.6991 | 0.4877 |
No log | 0.9412 | 64 | 0.4240 | 0.5768 | 0.4248 |
No log | 0.9706 | 66 | 0.4489 | 0.5218 | 0.4498 |
No log | 1.0 | 68 | 0.4155 | 0.5740 | 0.4162 |
No log | 1.0294 | 70 | 0.4471 | 0.6602 | 0.4478 |
No log | 1.0588 | 72 | 0.5177 | 0.7016 | 0.5184 |
No log | 1.0882 | 74 | 0.5263 | 0.7127 | 0.5269 |
No log | 1.1176 | 76 | 0.4758 | 0.7010 | 0.4764 |
No log | 1.1471 | 78 | 0.4357 | 0.6628 | 0.4362 |
No log | 1.1765 | 80 | 0.4209 | 0.6616 | 0.4215 |
No log | 1.2059 | 82 | 0.4061 | 0.6221 | 0.4068 |
No log | 1.2353 | 84 | 0.4186 | 0.6655 | 0.4194 |
No log | 1.2647 | 86 | 0.4413 | 0.7015 | 0.4422 |
No log | 1.2941 | 88 | 0.4473 | 0.7042 | 0.4482 |
No log | 1.3235 | 90 | 0.4758 | 0.7292 | 0.4768 |
No log | 1.3529 | 92 | 0.4618 | 0.7148 | 0.4629 |
No log | 1.3824 | 94 | 0.4397 | 0.6998 | 0.4407 |
No log | 1.4118 | 96 | 0.4345 | 0.7052 | 0.4356 |
No log | 1.4412 | 98 | 0.4052 | 0.6829 | 0.4063 |
No log | 1.4706 | 100 | 0.4048 | 0.5959 | 0.4060 |
No log | 1.5 | 102 | 0.4027 | 0.6179 | 0.4039 |
No log | 1.5294 | 104 | 0.4026 | 0.6680 | 0.4037 |
No log | 1.5588 | 106 | 0.4391 | 0.7087 | 0.4401 |
No log | 1.5882 | 108 | 0.4712 | 0.7336 | 0.4721 |
No log | 1.6176 | 110 | 0.4276 | 0.6772 | 0.4283 |
No log | 1.6471 | 112 | 0.4190 | 0.6668 | 0.4197 |
No log | 1.6765 | 114 | 0.4454 | 0.7091 | 0.4461 |
No log | 1.7059 | 116 | 0.5060 | 0.7442 | 0.5068 |
No log | 1.7353 | 118 | 0.4610 | 0.7042 | 0.4618 |
No log | 1.7647 | 120 | 0.4166 | 0.6410 | 0.4173 |
No log | 1.7941 | 122 | 0.4153 | 0.6082 | 0.4160 |
No log | 1.8235 | 124 | 0.4220 | 0.6257 | 0.4227 |
No log | 1.8529 | 126 | 0.4287 | 0.6457 | 0.4294 |
No log | 1.8824 | 128 | 0.4788 | 0.6965 | 0.4796 |
No log | 1.9118 | 130 | 0.5027 | 0.7107 | 0.5037 |
No log | 1.9412 | 132 | 0.4600 | 0.6896 | 0.4610 |
No log | 1.9706 | 134 | 0.4402 | 0.6761 | 0.4412 |
No log | 2.0 | 136 | 0.4284 | 0.6458 | 0.4294 |
No log | 2.0294 | 138 | 0.4266 | 0.6560 | 0.4276 |
No log | 2.0588 | 140 | 0.4405 | 0.6865 | 0.4414 |
No log | 2.0882 | 142 | 0.4423 | 0.6897 | 0.4432 |
No log | 2.1176 | 144 | 0.4177 | 0.6767 | 0.4185 |
No log | 2.1471 | 146 | 0.4062 | 0.6706 | 0.4070 |
No log | 2.1765 | 148 | 0.3957 | 0.6445 | 0.3964 |
No log | 2.2059 | 150 | 0.4027 | 0.6540 | 0.4034 |
No log | 2.2353 | 152 | 0.4679 | 0.7228 | 0.4687 |
No log | 2.2647 | 154 | 0.5938 | 0.7484 | 0.5948 |
No log | 2.2941 | 156 | 0.6232 | 0.7519 | 0.6242 |
No log | 2.3235 | 158 | 0.5488 | 0.7441 | 0.5497 |
No log | 2.3529 | 160 | 0.4352 | 0.6753 | 0.4359 |
No log | 2.3824 | 162 | 0.4015 | 0.6315 | 0.4021 |
No log | 2.4118 | 164 | 0.4037 | 0.6245 | 0.4044 |
No log | 2.4412 | 166 | 0.4137 | 0.6409 | 0.4144 |
No log | 2.4706 | 168 | 0.4356 | 0.6641 | 0.4365 |
No log | 2.5 | 170 | 0.4603 | 0.6627 | 0.4613 |
No log | 2.5294 | 172 | 0.4757 | 0.6866 | 0.4768 |
No log | 2.5588 | 174 | 0.5170 | 0.7188 | 0.5181 |
No log | 2.5882 | 176 | 0.5960 | 0.7437 | 0.5971 |
No log | 2.6176 | 178 | 0.5579 | 0.7426 | 0.5589 |
No log | 2.6471 | 180 | 0.4732 | 0.7249 | 0.4741 |
No log | 2.6765 | 182 | 0.4149 | 0.6476 | 0.4157 |
No log | 2.7059 | 184 | 0.4075 | 0.6276 | 0.4083 |
No log | 2.7353 | 186 | 0.4103 | 0.6458 | 0.4110 |
No log | 2.7647 | 188 | 0.4533 | 0.6988 | 0.4541 |
No log | 2.7941 | 190 | 0.4953 | 0.7266 | 0.4961 |
No log | 2.8235 | 192 | 0.4722 | 0.7070 | 0.4729 |
No log | 2.8529 | 194 | 0.4285 | 0.6622 | 0.4292 |
No log | 2.8824 | 196 | 0.4084 | 0.6414 | 0.4090 |
No log | 2.9118 | 198 | 0.4201 | 0.6096 | 0.4208 |
No log | 2.9412 | 200 | 0.4175 | 0.6451 | 0.4183 |
No log | 2.9706 | 202 | 0.4422 | 0.6796 | 0.4430 |
No log | 3.0 | 204 | 0.5450 | 0.7282 | 0.5459 |
No log | 3.0294 | 206 | 0.6121 | 0.7490 | 0.6130 |
No log | 3.0588 | 208 | 0.5880 | 0.7396 | 0.5889 |
No log | 3.0882 | 210 | 0.5100 | 0.7223 | 0.5108 |
No log | 3.1176 | 212 | 0.4333 | 0.6771 | 0.4340 |
No log | 3.1471 | 214 | 0.4124 | 0.6371 | 0.4131 |
No log | 3.1765 | 216 | 0.4112 | 0.6370 | 0.4119 |
No log | 3.2059 | 218 | 0.4155 | 0.6550 | 0.4162 |
No log | 3.2353 | 220 | 0.4255 | 0.6713 | 0.4261 |
No log | 3.2647 | 222 | 0.4460 | 0.6958 | 0.4466 |
No log | 3.2941 | 224 | 0.4749 | 0.7032 | 0.4756 |
No log | 3.3235 | 226 | 0.5252 | 0.7171 | 0.5260 |
No log | 3.3529 | 228 | 0.5761 | 0.7271 | 0.5770 |
No log | 3.3824 | 230 | 0.5424 | 0.7258 | 0.5433 |
No log | 3.4118 | 232 | 0.5033 | 0.7179 | 0.5041 |
No log | 3.4412 | 234 | 0.4933 | 0.7133 | 0.4940 |
No log | 3.4706 | 236 | 0.4964 | 0.7201 | 0.4971 |
No log | 3.5 | 238 | 0.5313 | 0.7329 | 0.5320 |
No log | 3.5294 | 240 | 0.5494 | 0.7341 | 0.5502 |
No log | 3.5588 | 242 | 0.5223 | 0.7392 | 0.5230 |
No log | 3.5882 | 244 | 0.4708 | 0.7181 | 0.4714 |
No log | 3.6176 | 246 | 0.4365 | 0.6782 | 0.4371 |
No log | 3.6471 | 248 | 0.4337 | 0.6746 | 0.4344 |
No log | 3.6765 | 250 | 0.4371 | 0.6763 | 0.4378 |
No log | 3.7059 | 252 | 0.4610 | 0.7008 | 0.4617 |
No log | 3.7353 | 254 | 0.4930 | 0.7247 | 0.4938 |
No log | 3.7647 | 256 | 0.5341 | 0.7435 | 0.5349 |
No log | 3.7941 | 258 | 0.5192 | 0.7332 | 0.5200 |
No log | 3.8235 | 260 | 0.4837 | 0.7158 | 0.4845 |
No log | 3.8529 | 262 | 0.4452 | 0.6729 | 0.4460 |
No log | 3.8824 | 264 | 0.4277 | 0.6541 | 0.4284 |
No log | 3.9118 | 266 | 0.4262 | 0.6547 | 0.4268 |
No log | 3.9412 | 268 | 0.4212 | 0.6513 | 0.4219 |
No log | 3.9706 | 270 | 0.4237 | 0.6547 | 0.4244 |
No log | 4.0 | 272 | 0.4380 | 0.6695 | 0.4387 |
No log | 4.0294 | 274 | 0.4502 | 0.6811 | 0.4508 |
No log | 4.0588 | 276 | 0.4730 | 0.7114 | 0.4737 |
No log | 4.0882 | 278 | 0.4878 | 0.7223 | 0.4885 |
No log | 4.1176 | 280 | 0.5147 | 0.7287 | 0.5155 |
No log | 4.1471 | 282 | 0.5187 | 0.7326 | 0.5195 |
No log | 4.1765 | 284 | 0.5017 | 0.7180 | 0.5025 |
No log | 4.2059 | 286 | 0.4877 | 0.7105 | 0.4884 |
No log | 4.2353 | 288 | 0.4733 | 0.6938 | 0.4740 |
No log | 4.2647 | 290 | 0.4711 | 0.6904 | 0.4717 |
No log | 4.2941 | 292 | 0.4579 | 0.6737 | 0.4585 |
No log | 4.3235 | 294 | 0.4489 | 0.6643 | 0.4495 |
No log | 4.3529 | 296 | 0.4533 | 0.6660 | 0.4538 |
No log | 4.3824 | 298 | 0.4672 | 0.6868 | 0.4677 |
No log | 4.4118 | 300 | 0.4840 | 0.6988 | 0.4846 |
No log | 4.4412 | 302 | 0.4849 | 0.6971 | 0.4856 |
No log | 4.4706 | 304 | 0.4817 | 0.6934 | 0.4823 |
No log | 4.5 | 306 | 0.4800 | 0.6933 | 0.4807 |
No log | 4.5294 | 308 | 0.4724 | 0.6864 | 0.4730 |
No log | 4.5588 | 310 | 0.4680 | 0.6745 | 0.4686 |
No log | 4.5882 | 312 | 0.4671 | 0.6754 | 0.4677 |
No log | 4.6176 | 314 | 0.4664 | 0.6754 | 0.4670 |
No log | 4.6471 | 316 | 0.4698 | 0.6823 | 0.4704 |
No log | 4.6765 | 318 | 0.4733 | 0.6823 | 0.4739 |
No log | 4.7059 | 320 | 0.4816 | 0.6823 | 0.4822 |
No log | 4.7353 | 322 | 0.4931 | 0.6945 | 0.4937 |
No log | 4.7647 | 324 | 0.5064 | 0.7007 | 0.5071 |
No log | 4.7941 | 326 | 0.5134 | 0.7058 | 0.5140 |
No log | 4.8235 | 328 | 0.5128 | 0.7058 | 0.5134 |
No log | 4.8529 | 330 | 0.5093 | 0.7063 | 0.5099 |
No log | 4.8824 | 332 | 0.5035 | 0.7045 | 0.5042 |
No log | 4.9118 | 334 | 0.5013 | 0.7038 | 0.5020 |
No log | 4.9412 | 336 | 0.5006 | 0.7047 | 0.5012 |
No log | 4.9706 | 338 | 0.4986 | 0.6978 | 0.4992 |
No log | 5.0 | 340 | 0.4974 | 0.6961 | 0.4980 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_prompt_adherence_task5_fold2
Base model
google-bert/bert-base-cased