bert_baseline_prompt_adherence_task5_fold3
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5456
- Qwk: 0.6760
- Mse: 0.5459
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0294 | 2 | 2.4749 | 0.0 | 2.4721 |
No log | 0.0588 | 4 | 2.1459 | 0.0199 | 2.1435 |
No log | 0.0882 | 6 | 1.8011 | 0.0049 | 1.7992 |
No log | 0.1176 | 8 | 1.3901 | 0.0049 | 1.3889 |
No log | 0.1471 | 10 | 1.0957 | 0.0590 | 1.0951 |
No log | 0.1765 | 12 | 0.9696 | 0.3591 | 0.9694 |
No log | 0.2059 | 14 | 0.9027 | 0.3624 | 0.9026 |
No log | 0.2353 | 16 | 0.8909 | 0.3377 | 0.8906 |
No log | 0.2647 | 18 | 0.8084 | 0.3554 | 0.8083 |
No log | 0.2941 | 20 | 1.0088 | 0.3345 | 1.0094 |
No log | 0.3235 | 22 | 1.2775 | 0.2254 | 1.2784 |
No log | 0.3529 | 24 | 1.0790 | 0.3354 | 1.0797 |
No log | 0.3824 | 26 | 0.7771 | 0.4393 | 0.7774 |
No log | 0.4118 | 28 | 0.7450 | 0.3344 | 0.7446 |
No log | 0.4412 | 30 | 0.8259 | 0.2802 | 0.8252 |
No log | 0.4706 | 32 | 0.8112 | 0.2766 | 0.8105 |
No log | 0.5 | 34 | 0.6731 | 0.3686 | 0.6728 |
No log | 0.5294 | 36 | 0.6481 | 0.4971 | 0.6484 |
No log | 0.5588 | 38 | 0.7080 | 0.4886 | 0.7087 |
No log | 0.5882 | 40 | 0.7139 | 0.4766 | 0.7147 |
No log | 0.6176 | 42 | 0.6164 | 0.5583 | 0.6169 |
No log | 0.6471 | 44 | 0.5935 | 0.4936 | 0.5936 |
No log | 0.6765 | 46 | 0.6374 | 0.4203 | 0.6372 |
No log | 0.7059 | 48 | 0.5928 | 0.4631 | 0.5928 |
No log | 0.7353 | 50 | 0.5733 | 0.4847 | 0.5736 |
No log | 0.7647 | 52 | 0.5770 | 0.4753 | 0.5772 |
No log | 0.7941 | 54 | 0.5746 | 0.5003 | 0.5748 |
No log | 0.8235 | 56 | 0.5707 | 0.6052 | 0.5713 |
No log | 0.8529 | 58 | 0.5921 | 0.6533 | 0.5928 |
No log | 0.8824 | 60 | 0.5380 | 0.6282 | 0.5385 |
No log | 0.9118 | 62 | 0.6005 | 0.4814 | 0.6003 |
No log | 0.9412 | 64 | 0.6857 | 0.4391 | 0.6853 |
No log | 0.9706 | 66 | 0.5771 | 0.5155 | 0.5770 |
No log | 1.0 | 68 | 0.5367 | 0.6103 | 0.5373 |
No log | 1.0294 | 70 | 0.5839 | 0.5148 | 0.5845 |
No log | 1.0588 | 72 | 0.6173 | 0.4947 | 0.6175 |
No log | 1.0882 | 74 | 0.6022 | 0.4926 | 0.6023 |
No log | 1.1176 | 76 | 0.5431 | 0.5187 | 0.5433 |
No log | 1.1471 | 78 | 0.5229 | 0.6195 | 0.5232 |
No log | 1.1765 | 80 | 0.5204 | 0.6371 | 0.5207 |
No log | 1.2059 | 82 | 0.5319 | 0.5871 | 0.5321 |
No log | 1.2353 | 84 | 0.5308 | 0.5959 | 0.5311 |
No log | 1.2647 | 86 | 0.5366 | 0.6399 | 0.5370 |
No log | 1.2941 | 88 | 0.5987 | 0.6801 | 0.5993 |
No log | 1.3235 | 90 | 0.7410 | 0.6784 | 0.7418 |
No log | 1.3529 | 92 | 0.6915 | 0.6820 | 0.6922 |
No log | 1.3824 | 94 | 0.5604 | 0.6365 | 0.5609 |
No log | 1.4118 | 96 | 0.5407 | 0.5640 | 0.5409 |
No log | 1.4412 | 98 | 0.5591 | 0.5203 | 0.5591 |
No log | 1.4706 | 100 | 0.5328 | 0.5700 | 0.5330 |
No log | 1.5 | 102 | 0.5414 | 0.6612 | 0.5420 |
No log | 1.5294 | 104 | 0.5840 | 0.7097 | 0.5846 |
No log | 1.5588 | 106 | 0.5464 | 0.6740 | 0.5470 |
No log | 1.5882 | 108 | 0.5200 | 0.6512 | 0.5205 |
No log | 1.6176 | 110 | 0.5167 | 0.6333 | 0.5171 |
No log | 1.6471 | 112 | 0.5197 | 0.5965 | 0.5199 |
No log | 1.6765 | 114 | 0.5236 | 0.6187 | 0.5239 |
No log | 1.7059 | 116 | 0.5351 | 0.5494 | 0.5352 |
No log | 1.7353 | 118 | 0.5291 | 0.5751 | 0.5293 |
No log | 1.7647 | 120 | 0.5265 | 0.6247 | 0.5268 |
No log | 1.7941 | 122 | 0.5572 | 0.6563 | 0.5578 |
No log | 1.8235 | 124 | 0.5681 | 0.6614 | 0.5687 |
No log | 1.8529 | 126 | 0.5323 | 0.6616 | 0.5328 |
No log | 1.8824 | 128 | 0.5293 | 0.6605 | 0.5297 |
No log | 1.9118 | 130 | 0.5659 | 0.6773 | 0.5666 |
No log | 1.9412 | 132 | 0.6228 | 0.6951 | 0.6236 |
No log | 1.9706 | 134 | 0.5668 | 0.6851 | 0.5675 |
No log | 2.0 | 136 | 0.5228 | 0.6501 | 0.5232 |
No log | 2.0294 | 138 | 0.5200 | 0.6360 | 0.5203 |
No log | 2.0588 | 140 | 0.5316 | 0.6764 | 0.5320 |
No log | 2.0882 | 142 | 0.5665 | 0.6812 | 0.5670 |
No log | 2.1176 | 144 | 0.5876 | 0.6845 | 0.5881 |
No log | 2.1471 | 146 | 0.5551 | 0.6688 | 0.5555 |
No log | 2.1765 | 148 | 0.5267 | 0.6154 | 0.5268 |
No log | 2.2059 | 150 | 0.5465 | 0.5742 | 0.5464 |
No log | 2.2353 | 152 | 0.5241 | 0.6233 | 0.5241 |
No log | 2.2647 | 154 | 0.5212 | 0.6710 | 0.5214 |
No log | 2.2941 | 156 | 0.6121 | 0.6954 | 0.6126 |
No log | 2.3235 | 158 | 0.6867 | 0.6923 | 0.6873 |
No log | 2.3529 | 160 | 0.6255 | 0.6669 | 0.6260 |
No log | 2.3824 | 162 | 0.5479 | 0.6591 | 0.5481 |
No log | 2.4118 | 164 | 0.5481 | 0.5408 | 0.5480 |
No log | 2.4412 | 166 | 0.6179 | 0.4843 | 0.6175 |
No log | 2.4706 | 168 | 0.6060 | 0.4950 | 0.6057 |
No log | 2.5 | 170 | 0.5484 | 0.5759 | 0.5484 |
No log | 2.5294 | 172 | 0.5627 | 0.6639 | 0.5632 |
No log | 2.5588 | 174 | 0.6163 | 0.6884 | 0.6170 |
No log | 2.5882 | 176 | 0.6004 | 0.6793 | 0.6011 |
No log | 2.6176 | 178 | 0.5451 | 0.6627 | 0.5455 |
No log | 2.6471 | 180 | 0.5320 | 0.6231 | 0.5322 |
No log | 2.6765 | 182 | 0.5303 | 0.6075 | 0.5304 |
No log | 2.7059 | 184 | 0.5405 | 0.6576 | 0.5409 |
No log | 2.7353 | 186 | 0.5485 | 0.6715 | 0.5489 |
No log | 2.7647 | 188 | 0.5315 | 0.6415 | 0.5318 |
No log | 2.7941 | 190 | 0.5236 | 0.6323 | 0.5238 |
No log | 2.8235 | 192 | 0.5207 | 0.6155 | 0.5208 |
No log | 2.8529 | 194 | 0.5220 | 0.6118 | 0.5222 |
No log | 2.8824 | 196 | 0.5247 | 0.6076 | 0.5248 |
No log | 2.9118 | 198 | 0.5174 | 0.6199 | 0.5177 |
No log | 2.9412 | 200 | 0.5366 | 0.6767 | 0.5371 |
No log | 2.9706 | 202 | 0.5545 | 0.6879 | 0.5550 |
No log | 3.0 | 204 | 0.5502 | 0.6864 | 0.5508 |
No log | 3.0294 | 206 | 0.5384 | 0.6775 | 0.5388 |
No log | 3.0588 | 208 | 0.5214 | 0.6586 | 0.5217 |
No log | 3.0882 | 210 | 0.5173 | 0.6456 | 0.5176 |
No log | 3.1176 | 212 | 0.5206 | 0.6606 | 0.5210 |
No log | 3.1471 | 214 | 0.5234 | 0.6644 | 0.5238 |
No log | 3.1765 | 216 | 0.5234 | 0.6521 | 0.5238 |
No log | 3.2059 | 218 | 0.5330 | 0.6657 | 0.5334 |
No log | 3.2353 | 220 | 0.5636 | 0.6858 | 0.5642 |
No log | 3.2647 | 222 | 0.6135 | 0.6895 | 0.6142 |
No log | 3.2941 | 224 | 0.6480 | 0.7003 | 0.6487 |
No log | 3.3235 | 226 | 0.6066 | 0.6867 | 0.6072 |
No log | 3.3529 | 228 | 0.5740 | 0.6742 | 0.5745 |
No log | 3.3824 | 230 | 0.5316 | 0.6572 | 0.5319 |
No log | 3.4118 | 232 | 0.5282 | 0.6290 | 0.5284 |
No log | 3.4412 | 234 | 0.5292 | 0.6142 | 0.5293 |
No log | 3.4706 | 236 | 0.5249 | 0.6491 | 0.5252 |
No log | 3.5 | 238 | 0.5402 | 0.6719 | 0.5405 |
No log | 3.5294 | 240 | 0.5964 | 0.6824 | 0.5969 |
No log | 3.5588 | 242 | 0.6376 | 0.7032 | 0.6383 |
No log | 3.5882 | 244 | 0.6059 | 0.6967 | 0.6065 |
No log | 3.6176 | 246 | 0.5732 | 0.6821 | 0.5737 |
No log | 3.6471 | 248 | 0.5338 | 0.6719 | 0.5341 |
No log | 3.6765 | 250 | 0.5224 | 0.6437 | 0.5226 |
No log | 3.7059 | 252 | 0.5230 | 0.6071 | 0.5230 |
No log | 3.7353 | 254 | 0.5270 | 0.5873 | 0.5270 |
No log | 3.7647 | 256 | 0.5235 | 0.5990 | 0.5235 |
No log | 3.7941 | 258 | 0.5218 | 0.6347 | 0.5219 |
No log | 3.8235 | 260 | 0.5424 | 0.6786 | 0.5427 |
No log | 3.8529 | 262 | 0.5745 | 0.6784 | 0.5750 |
No log | 3.8824 | 264 | 0.5763 | 0.6819 | 0.5768 |
No log | 3.9118 | 266 | 0.5510 | 0.6782 | 0.5514 |
No log | 3.9412 | 268 | 0.5291 | 0.6627 | 0.5294 |
No log | 3.9706 | 270 | 0.5224 | 0.6463 | 0.5227 |
No log | 4.0 | 272 | 0.5227 | 0.6448 | 0.5229 |
No log | 4.0294 | 274 | 0.5224 | 0.6547 | 0.5227 |
No log | 4.0588 | 276 | 0.5250 | 0.6551 | 0.5253 |
No log | 4.0882 | 278 | 0.5293 | 0.6722 | 0.5297 |
No log | 4.1176 | 280 | 0.5426 | 0.6832 | 0.5430 |
No log | 4.1471 | 282 | 0.5520 | 0.6815 | 0.5524 |
No log | 4.1765 | 284 | 0.5699 | 0.6836 | 0.5703 |
No log | 4.2059 | 286 | 0.5663 | 0.6812 | 0.5668 |
No log | 4.2353 | 288 | 0.5546 | 0.6773 | 0.5550 |
No log | 4.2647 | 290 | 0.5379 | 0.6769 | 0.5382 |
No log | 4.2941 | 292 | 0.5267 | 0.6674 | 0.5269 |
No log | 4.3235 | 294 | 0.5276 | 0.6601 | 0.5279 |
No log | 4.3529 | 296 | 0.5324 | 0.6729 | 0.5327 |
No log | 4.3824 | 298 | 0.5344 | 0.6753 | 0.5347 |
No log | 4.4118 | 300 | 0.5311 | 0.6627 | 0.5313 |
No log | 4.4412 | 302 | 0.5312 | 0.6644 | 0.5315 |
No log | 4.4706 | 304 | 0.5365 | 0.6753 | 0.5368 |
No log | 4.5 | 306 | 0.5415 | 0.6727 | 0.5418 |
No log | 4.5294 | 308 | 0.5430 | 0.6727 | 0.5433 |
No log | 4.5588 | 310 | 0.5413 | 0.6768 | 0.5416 |
No log | 4.5882 | 312 | 0.5364 | 0.6731 | 0.5367 |
No log | 4.6176 | 314 | 0.5355 | 0.6683 | 0.5357 |
No log | 4.6471 | 316 | 0.5381 | 0.6722 | 0.5384 |
No log | 4.6765 | 318 | 0.5432 | 0.6727 | 0.5435 |
No log | 4.7059 | 320 | 0.5478 | 0.6726 | 0.5481 |
No log | 4.7353 | 322 | 0.5499 | 0.6742 | 0.5503 |
No log | 4.7647 | 324 | 0.5515 | 0.6758 | 0.5518 |
No log | 4.7941 | 326 | 0.5508 | 0.6758 | 0.5511 |
No log | 4.8235 | 328 | 0.5492 | 0.6726 | 0.5495 |
No log | 4.8529 | 330 | 0.5464 | 0.6710 | 0.5468 |
No log | 4.8824 | 332 | 0.5456 | 0.6760 | 0.5459 |
No log | 4.9118 | 334 | 0.5460 | 0.6719 | 0.5464 |
No log | 4.9412 | 336 | 0.5454 | 0.6760 | 0.5457 |
No log | 4.9706 | 338 | 0.5454 | 0.6760 | 0.5457 |
No log | 5.0 | 340 | 0.5456 | 0.6760 | 0.5459 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for salbatarni/bert_baseline_prompt_adherence_task5_fold3
Base model
google-bert/bert-base-cased