Edit model card

bert_baseline_prompt_adherence_task5_fold3

This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5456
  • Qwk: 0.6760
  • Mse: 0.5459

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0294 2 2.4749 0.0 2.4721
No log 0.0588 4 2.1459 0.0199 2.1435
No log 0.0882 6 1.8011 0.0049 1.7992
No log 0.1176 8 1.3901 0.0049 1.3889
No log 0.1471 10 1.0957 0.0590 1.0951
No log 0.1765 12 0.9696 0.3591 0.9694
No log 0.2059 14 0.9027 0.3624 0.9026
No log 0.2353 16 0.8909 0.3377 0.8906
No log 0.2647 18 0.8084 0.3554 0.8083
No log 0.2941 20 1.0088 0.3345 1.0094
No log 0.3235 22 1.2775 0.2254 1.2784
No log 0.3529 24 1.0790 0.3354 1.0797
No log 0.3824 26 0.7771 0.4393 0.7774
No log 0.4118 28 0.7450 0.3344 0.7446
No log 0.4412 30 0.8259 0.2802 0.8252
No log 0.4706 32 0.8112 0.2766 0.8105
No log 0.5 34 0.6731 0.3686 0.6728
No log 0.5294 36 0.6481 0.4971 0.6484
No log 0.5588 38 0.7080 0.4886 0.7087
No log 0.5882 40 0.7139 0.4766 0.7147
No log 0.6176 42 0.6164 0.5583 0.6169
No log 0.6471 44 0.5935 0.4936 0.5936
No log 0.6765 46 0.6374 0.4203 0.6372
No log 0.7059 48 0.5928 0.4631 0.5928
No log 0.7353 50 0.5733 0.4847 0.5736
No log 0.7647 52 0.5770 0.4753 0.5772
No log 0.7941 54 0.5746 0.5003 0.5748
No log 0.8235 56 0.5707 0.6052 0.5713
No log 0.8529 58 0.5921 0.6533 0.5928
No log 0.8824 60 0.5380 0.6282 0.5385
No log 0.9118 62 0.6005 0.4814 0.6003
No log 0.9412 64 0.6857 0.4391 0.6853
No log 0.9706 66 0.5771 0.5155 0.5770
No log 1.0 68 0.5367 0.6103 0.5373
No log 1.0294 70 0.5839 0.5148 0.5845
No log 1.0588 72 0.6173 0.4947 0.6175
No log 1.0882 74 0.6022 0.4926 0.6023
No log 1.1176 76 0.5431 0.5187 0.5433
No log 1.1471 78 0.5229 0.6195 0.5232
No log 1.1765 80 0.5204 0.6371 0.5207
No log 1.2059 82 0.5319 0.5871 0.5321
No log 1.2353 84 0.5308 0.5959 0.5311
No log 1.2647 86 0.5366 0.6399 0.5370
No log 1.2941 88 0.5987 0.6801 0.5993
No log 1.3235 90 0.7410 0.6784 0.7418
No log 1.3529 92 0.6915 0.6820 0.6922
No log 1.3824 94 0.5604 0.6365 0.5609
No log 1.4118 96 0.5407 0.5640 0.5409
No log 1.4412 98 0.5591 0.5203 0.5591
No log 1.4706 100 0.5328 0.5700 0.5330
No log 1.5 102 0.5414 0.6612 0.5420
No log 1.5294 104 0.5840 0.7097 0.5846
No log 1.5588 106 0.5464 0.6740 0.5470
No log 1.5882 108 0.5200 0.6512 0.5205
No log 1.6176 110 0.5167 0.6333 0.5171
No log 1.6471 112 0.5197 0.5965 0.5199
No log 1.6765 114 0.5236 0.6187 0.5239
No log 1.7059 116 0.5351 0.5494 0.5352
No log 1.7353 118 0.5291 0.5751 0.5293
No log 1.7647 120 0.5265 0.6247 0.5268
No log 1.7941 122 0.5572 0.6563 0.5578
No log 1.8235 124 0.5681 0.6614 0.5687
No log 1.8529 126 0.5323 0.6616 0.5328
No log 1.8824 128 0.5293 0.6605 0.5297
No log 1.9118 130 0.5659 0.6773 0.5666
No log 1.9412 132 0.6228 0.6951 0.6236
No log 1.9706 134 0.5668 0.6851 0.5675
No log 2.0 136 0.5228 0.6501 0.5232
No log 2.0294 138 0.5200 0.6360 0.5203
No log 2.0588 140 0.5316 0.6764 0.5320
No log 2.0882 142 0.5665 0.6812 0.5670
No log 2.1176 144 0.5876 0.6845 0.5881
No log 2.1471 146 0.5551 0.6688 0.5555
No log 2.1765 148 0.5267 0.6154 0.5268
No log 2.2059 150 0.5465 0.5742 0.5464
No log 2.2353 152 0.5241 0.6233 0.5241
No log 2.2647 154 0.5212 0.6710 0.5214
No log 2.2941 156 0.6121 0.6954 0.6126
No log 2.3235 158 0.6867 0.6923 0.6873
No log 2.3529 160 0.6255 0.6669 0.6260
No log 2.3824 162 0.5479 0.6591 0.5481
No log 2.4118 164 0.5481 0.5408 0.5480
No log 2.4412 166 0.6179 0.4843 0.6175
No log 2.4706 168 0.6060 0.4950 0.6057
No log 2.5 170 0.5484 0.5759 0.5484
No log 2.5294 172 0.5627 0.6639 0.5632
No log 2.5588 174 0.6163 0.6884 0.6170
No log 2.5882 176 0.6004 0.6793 0.6011
No log 2.6176 178 0.5451 0.6627 0.5455
No log 2.6471 180 0.5320 0.6231 0.5322
No log 2.6765 182 0.5303 0.6075 0.5304
No log 2.7059 184 0.5405 0.6576 0.5409
No log 2.7353 186 0.5485 0.6715 0.5489
No log 2.7647 188 0.5315 0.6415 0.5318
No log 2.7941 190 0.5236 0.6323 0.5238
No log 2.8235 192 0.5207 0.6155 0.5208
No log 2.8529 194 0.5220 0.6118 0.5222
No log 2.8824 196 0.5247 0.6076 0.5248
No log 2.9118 198 0.5174 0.6199 0.5177
No log 2.9412 200 0.5366 0.6767 0.5371
No log 2.9706 202 0.5545 0.6879 0.5550
No log 3.0 204 0.5502 0.6864 0.5508
No log 3.0294 206 0.5384 0.6775 0.5388
No log 3.0588 208 0.5214 0.6586 0.5217
No log 3.0882 210 0.5173 0.6456 0.5176
No log 3.1176 212 0.5206 0.6606 0.5210
No log 3.1471 214 0.5234 0.6644 0.5238
No log 3.1765 216 0.5234 0.6521 0.5238
No log 3.2059 218 0.5330 0.6657 0.5334
No log 3.2353 220 0.5636 0.6858 0.5642
No log 3.2647 222 0.6135 0.6895 0.6142
No log 3.2941 224 0.6480 0.7003 0.6487
No log 3.3235 226 0.6066 0.6867 0.6072
No log 3.3529 228 0.5740 0.6742 0.5745
No log 3.3824 230 0.5316 0.6572 0.5319
No log 3.4118 232 0.5282 0.6290 0.5284
No log 3.4412 234 0.5292 0.6142 0.5293
No log 3.4706 236 0.5249 0.6491 0.5252
No log 3.5 238 0.5402 0.6719 0.5405
No log 3.5294 240 0.5964 0.6824 0.5969
No log 3.5588 242 0.6376 0.7032 0.6383
No log 3.5882 244 0.6059 0.6967 0.6065
No log 3.6176 246 0.5732 0.6821 0.5737
No log 3.6471 248 0.5338 0.6719 0.5341
No log 3.6765 250 0.5224 0.6437 0.5226
No log 3.7059 252 0.5230 0.6071 0.5230
No log 3.7353 254 0.5270 0.5873 0.5270
No log 3.7647 256 0.5235 0.5990 0.5235
No log 3.7941 258 0.5218 0.6347 0.5219
No log 3.8235 260 0.5424 0.6786 0.5427
No log 3.8529 262 0.5745 0.6784 0.5750
No log 3.8824 264 0.5763 0.6819 0.5768
No log 3.9118 266 0.5510 0.6782 0.5514
No log 3.9412 268 0.5291 0.6627 0.5294
No log 3.9706 270 0.5224 0.6463 0.5227
No log 4.0 272 0.5227 0.6448 0.5229
No log 4.0294 274 0.5224 0.6547 0.5227
No log 4.0588 276 0.5250 0.6551 0.5253
No log 4.0882 278 0.5293 0.6722 0.5297
No log 4.1176 280 0.5426 0.6832 0.5430
No log 4.1471 282 0.5520 0.6815 0.5524
No log 4.1765 284 0.5699 0.6836 0.5703
No log 4.2059 286 0.5663 0.6812 0.5668
No log 4.2353 288 0.5546 0.6773 0.5550
No log 4.2647 290 0.5379 0.6769 0.5382
No log 4.2941 292 0.5267 0.6674 0.5269
No log 4.3235 294 0.5276 0.6601 0.5279
No log 4.3529 296 0.5324 0.6729 0.5327
No log 4.3824 298 0.5344 0.6753 0.5347
No log 4.4118 300 0.5311 0.6627 0.5313
No log 4.4412 302 0.5312 0.6644 0.5315
No log 4.4706 304 0.5365 0.6753 0.5368
No log 4.5 306 0.5415 0.6727 0.5418
No log 4.5294 308 0.5430 0.6727 0.5433
No log 4.5588 310 0.5413 0.6768 0.5416
No log 4.5882 312 0.5364 0.6731 0.5367
No log 4.6176 314 0.5355 0.6683 0.5357
No log 4.6471 316 0.5381 0.6722 0.5384
No log 4.6765 318 0.5432 0.6727 0.5435
No log 4.7059 320 0.5478 0.6726 0.5481
No log 4.7353 322 0.5499 0.6742 0.5503
No log 4.7647 324 0.5515 0.6758 0.5518
No log 4.7941 326 0.5508 0.6758 0.5511
No log 4.8235 328 0.5492 0.6726 0.5495
No log 4.8529 330 0.5464 0.6710 0.5468
No log 4.8824 332 0.5456 0.6760 0.5459
No log 4.9118 334 0.5460 0.6719 0.5464
No log 4.9412 336 0.5454 0.6760 0.5457
No log 4.9706 338 0.5454 0.6760 0.5457
No log 5.0 340 0.5456 0.6760 0.5459

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/bert_baseline_prompt_adherence_task5_fold3

Finetuned
(1906)
this model