bert_baseline_prompt_adherence_task5_fold4
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4551
- Qwk: 0.6660
- Mse: 0.4557
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0294 | 2 | 2.5264 | 0.0 | 2.5267 |
No log | 0.0588 | 4 | 2.0698 | 0.0038 | 2.0712 |
No log | 0.0882 | 6 | 1.6692 | 0.0 | 1.6712 |
No log | 0.1176 | 8 | 1.2106 | 0.0 | 1.2131 |
No log | 0.1471 | 10 | 0.9954 | 0.0691 | 0.9982 |
No log | 0.1765 | 12 | 0.8820 | 0.2541 | 0.8852 |
No log | 0.2059 | 14 | 0.8417 | 0.2650 | 0.8448 |
No log | 0.2353 | 16 | 0.8815 | 0.2322 | 0.8848 |
No log | 0.2647 | 18 | 0.8194 | 0.2689 | 0.8221 |
No log | 0.2941 | 20 | 0.7283 | 0.3098 | 0.7301 |
No log | 0.3235 | 22 | 0.7901 | 0.2583 | 0.7914 |
No log | 0.3529 | 24 | 0.6593 | 0.3801 | 0.6606 |
No log | 0.3824 | 26 | 0.7245 | 0.5177 | 0.7257 |
No log | 0.4118 | 28 | 0.6890 | 0.5405 | 0.6901 |
No log | 0.4412 | 30 | 0.6153 | 0.5085 | 0.6163 |
No log | 0.4706 | 32 | 0.5972 | 0.4415 | 0.5983 |
No log | 0.5 | 34 | 0.6245 | 0.4454 | 0.6258 |
No log | 0.5294 | 36 | 0.6180 | 0.4472 | 0.6194 |
No log | 0.5588 | 38 | 0.6077 | 0.4471 | 0.6092 |
No log | 0.5882 | 40 | 0.5946 | 0.4562 | 0.5961 |
No log | 0.6176 | 42 | 0.5627 | 0.4472 | 0.5640 |
No log | 0.6471 | 44 | 0.5460 | 0.5244 | 0.5469 |
No log | 0.6765 | 46 | 0.6361 | 0.4065 | 0.6367 |
No log | 0.7059 | 48 | 0.5804 | 0.4599 | 0.5810 |
No log | 0.7353 | 50 | 0.5607 | 0.5779 | 0.5615 |
No log | 0.7647 | 52 | 0.6101 | 0.6093 | 0.6110 |
No log | 0.7941 | 54 | 0.5810 | 0.5759 | 0.5820 |
No log | 0.8235 | 56 | 0.5469 | 0.5709 | 0.5479 |
No log | 0.8529 | 58 | 0.5256 | 0.4866 | 0.5264 |
No log | 0.8824 | 60 | 0.5980 | 0.4283 | 0.5987 |
No log | 0.9118 | 62 | 0.6064 | 0.4232 | 0.6072 |
No log | 0.9412 | 64 | 0.5125 | 0.4985 | 0.5135 |
No log | 0.9706 | 66 | 0.5452 | 0.5979 | 0.5463 |
No log | 1.0 | 68 | 0.5796 | 0.6272 | 0.5808 |
No log | 1.0294 | 70 | 0.5182 | 0.5908 | 0.5192 |
No log | 1.0588 | 72 | 0.5140 | 0.5991 | 0.5149 |
No log | 1.0882 | 74 | 0.5245 | 0.6207 | 0.5253 |
No log | 1.1176 | 76 | 0.5014 | 0.6022 | 0.5021 |
No log | 1.1471 | 78 | 0.5038 | 0.5943 | 0.5044 |
No log | 1.1765 | 80 | 0.5171 | 0.6163 | 0.5177 |
No log | 1.2059 | 82 | 0.6261 | 0.6760 | 0.6268 |
No log | 1.2353 | 84 | 0.6490 | 0.6752 | 0.6499 |
No log | 1.2647 | 86 | 0.5317 | 0.6323 | 0.5326 |
No log | 1.2941 | 88 | 0.5102 | 0.5013 | 0.5110 |
No log | 1.3235 | 90 | 0.5808 | 0.4495 | 0.5815 |
No log | 1.3529 | 92 | 0.5643 | 0.4550 | 0.5651 |
No log | 1.3824 | 94 | 0.5106 | 0.4999 | 0.5117 |
No log | 1.4118 | 96 | 0.5167 | 0.5695 | 0.5179 |
No log | 1.4412 | 98 | 0.5727 | 0.6042 | 0.5738 |
No log | 1.4706 | 100 | 0.6069 | 0.6507 | 0.6080 |
No log | 1.5 | 102 | 0.5390 | 0.6260 | 0.5400 |
No log | 1.5294 | 104 | 0.4888 | 0.5835 | 0.4897 |
No log | 1.5588 | 106 | 0.4900 | 0.5230 | 0.4907 |
No log | 1.5882 | 108 | 0.4817 | 0.5590 | 0.4823 |
No log | 1.6176 | 110 | 0.4832 | 0.5992 | 0.4838 |
No log | 1.6471 | 112 | 0.4945 | 0.5880 | 0.4949 |
No log | 1.6765 | 114 | 0.5089 | 0.5723 | 0.5092 |
No log | 1.7059 | 116 | 0.5011 | 0.6063 | 0.5015 |
No log | 1.7353 | 118 | 0.5326 | 0.6648 | 0.5331 |
No log | 1.7647 | 120 | 0.5306 | 0.6618 | 0.5311 |
No log | 1.7941 | 122 | 0.5076 | 0.6601 | 0.5082 |
No log | 1.8235 | 124 | 0.4719 | 0.5863 | 0.4724 |
No log | 1.8529 | 126 | 0.4719 | 0.5670 | 0.4724 |
No log | 1.8824 | 128 | 0.4620 | 0.5819 | 0.4625 |
No log | 1.9118 | 130 | 0.4811 | 0.6184 | 0.4818 |
No log | 1.9412 | 132 | 0.4936 | 0.6386 | 0.4944 |
No log | 1.9706 | 134 | 0.4668 | 0.5933 | 0.4676 |
No log | 2.0 | 136 | 0.4560 | 0.5843 | 0.4566 |
No log | 2.0294 | 138 | 0.4566 | 0.5641 | 0.4572 |
No log | 2.0588 | 140 | 0.4535 | 0.5968 | 0.4542 |
No log | 2.0882 | 142 | 0.4773 | 0.6510 | 0.4780 |
No log | 2.1176 | 144 | 0.4823 | 0.6678 | 0.4829 |
No log | 2.1471 | 146 | 0.4443 | 0.6390 | 0.4448 |
No log | 2.1765 | 148 | 0.4879 | 0.5093 | 0.4881 |
No log | 2.2059 | 150 | 0.5565 | 0.4746 | 0.5565 |
No log | 2.2353 | 152 | 0.5079 | 0.5090 | 0.5080 |
No log | 2.2647 | 154 | 0.4413 | 0.6192 | 0.4417 |
No log | 2.2941 | 156 | 0.4994 | 0.6877 | 0.5000 |
No log | 2.3235 | 158 | 0.5384 | 0.6969 | 0.5390 |
No log | 2.3529 | 160 | 0.5459 | 0.7049 | 0.5465 |
No log | 2.3824 | 162 | 0.4896 | 0.6931 | 0.4902 |
No log | 2.4118 | 164 | 0.4515 | 0.6166 | 0.4521 |
No log | 2.4412 | 166 | 0.4542 | 0.5582 | 0.4548 |
No log | 2.4706 | 168 | 0.4744 | 0.5231 | 0.4750 |
No log | 2.5 | 170 | 0.4727 | 0.5311 | 0.4734 |
No log | 2.5294 | 172 | 0.4686 | 0.5308 | 0.4692 |
No log | 2.5588 | 174 | 0.4522 | 0.5758 | 0.4528 |
No log | 2.5882 | 176 | 0.4710 | 0.6394 | 0.4716 |
No log | 2.6176 | 178 | 0.5015 | 0.6718 | 0.5021 |
No log | 2.6471 | 180 | 0.4992 | 0.6662 | 0.4996 |
No log | 2.6765 | 182 | 0.4766 | 0.6586 | 0.4770 |
No log | 2.7059 | 184 | 0.4565 | 0.6203 | 0.4568 |
No log | 2.7353 | 186 | 0.4604 | 0.5839 | 0.4607 |
No log | 2.7647 | 188 | 0.4642 | 0.5807 | 0.4645 |
No log | 2.7941 | 190 | 0.4823 | 0.5543 | 0.4825 |
No log | 2.8235 | 192 | 0.4684 | 0.5730 | 0.4686 |
No log | 2.8529 | 194 | 0.4621 | 0.6599 | 0.4624 |
No log | 2.8824 | 196 | 0.5061 | 0.6894 | 0.5065 |
No log | 2.9118 | 198 | 0.6049 | 0.7179 | 0.6053 |
No log | 2.9412 | 200 | 0.6139 | 0.7144 | 0.6143 |
No log | 2.9706 | 202 | 0.5494 | 0.7066 | 0.5499 |
No log | 3.0 | 204 | 0.4878 | 0.6852 | 0.4883 |
No log | 3.0294 | 206 | 0.4412 | 0.6324 | 0.4416 |
No log | 3.0588 | 208 | 0.4376 | 0.5864 | 0.4381 |
No log | 3.0882 | 210 | 0.4372 | 0.5787 | 0.4378 |
No log | 3.1176 | 212 | 0.4362 | 0.5976 | 0.4368 |
No log | 3.1471 | 214 | 0.4480 | 0.6297 | 0.4486 |
No log | 3.1765 | 216 | 0.4506 | 0.6470 | 0.4512 |
No log | 3.2059 | 218 | 0.4538 | 0.6630 | 0.4543 |
No log | 3.2353 | 220 | 0.4517 | 0.6553 | 0.4523 |
No log | 3.2647 | 222 | 0.4429 | 0.6528 | 0.4434 |
No log | 3.2941 | 224 | 0.4419 | 0.6274 | 0.4423 |
No log | 3.3235 | 226 | 0.4443 | 0.5986 | 0.4447 |
No log | 3.3529 | 228 | 0.4438 | 0.6168 | 0.4442 |
No log | 3.3824 | 230 | 0.4436 | 0.6385 | 0.4441 |
No log | 3.4118 | 232 | 0.4517 | 0.6535 | 0.4522 |
No log | 3.4412 | 234 | 0.4706 | 0.6768 | 0.4711 |
No log | 3.4706 | 236 | 0.4663 | 0.6793 | 0.4668 |
No log | 3.5 | 238 | 0.4484 | 0.6485 | 0.4489 |
No log | 3.5294 | 240 | 0.4432 | 0.6242 | 0.4437 |
No log | 3.5588 | 242 | 0.4516 | 0.5690 | 0.4521 |
No log | 3.5882 | 244 | 0.4524 | 0.5692 | 0.4530 |
No log | 3.6176 | 246 | 0.4532 | 0.6189 | 0.4538 |
No log | 3.6471 | 248 | 0.4842 | 0.6598 | 0.4849 |
No log | 3.6765 | 250 | 0.5276 | 0.7093 | 0.5283 |
No log | 3.7059 | 252 | 0.5211 | 0.7109 | 0.5218 |
No log | 3.7353 | 254 | 0.4884 | 0.7045 | 0.4891 |
No log | 3.7647 | 256 | 0.4540 | 0.6519 | 0.4546 |
No log | 3.7941 | 258 | 0.4426 | 0.5963 | 0.4431 |
No log | 3.8235 | 260 | 0.4721 | 0.5300 | 0.4724 |
No log | 3.8529 | 262 | 0.4893 | 0.5089 | 0.4895 |
No log | 3.8824 | 264 | 0.4702 | 0.5384 | 0.4705 |
No log | 3.9118 | 266 | 0.4426 | 0.5917 | 0.4430 |
No log | 3.9412 | 268 | 0.4437 | 0.6570 | 0.4442 |
No log | 3.9706 | 270 | 0.4933 | 0.6938 | 0.4939 |
No log | 4.0 | 272 | 0.5444 | 0.7055 | 0.5451 |
No log | 4.0294 | 274 | 0.5539 | 0.7027 | 0.5546 |
No log | 4.0588 | 276 | 0.5254 | 0.7033 | 0.5262 |
No log | 4.0882 | 278 | 0.4805 | 0.6873 | 0.4812 |
No log | 4.1176 | 280 | 0.4416 | 0.6569 | 0.4422 |
No log | 4.1471 | 282 | 0.4319 | 0.6089 | 0.4323 |
No log | 4.1765 | 284 | 0.4440 | 0.5684 | 0.4444 |
No log | 4.2059 | 286 | 0.4576 | 0.5526 | 0.4579 |
No log | 4.2353 | 288 | 0.4602 | 0.5469 | 0.4605 |
No log | 4.2647 | 290 | 0.4573 | 0.5491 | 0.4576 |
No log | 4.2941 | 292 | 0.4470 | 0.5685 | 0.4474 |
No log | 4.3235 | 294 | 0.4351 | 0.5867 | 0.4355 |
No log | 4.3529 | 296 | 0.4371 | 0.6428 | 0.4377 |
No log | 4.3824 | 298 | 0.4542 | 0.6719 | 0.4549 |
No log | 4.4118 | 300 | 0.4759 | 0.6888 | 0.4766 |
No log | 4.4412 | 302 | 0.4875 | 0.7017 | 0.4882 |
No log | 4.4706 | 304 | 0.4885 | 0.7005 | 0.4892 |
No log | 4.5 | 306 | 0.4803 | 0.6927 | 0.4810 |
No log | 4.5294 | 308 | 0.4695 | 0.6736 | 0.4702 |
No log | 4.5588 | 310 | 0.4570 | 0.6633 | 0.4577 |
No log | 4.5882 | 312 | 0.4506 | 0.6443 | 0.4512 |
No log | 4.6176 | 314 | 0.4450 | 0.6455 | 0.4456 |
No log | 4.6471 | 316 | 0.4427 | 0.6507 | 0.4433 |
No log | 4.6765 | 318 | 0.4412 | 0.6514 | 0.4418 |
No log | 4.7059 | 320 | 0.4426 | 0.6558 | 0.4432 |
No log | 4.7353 | 322 | 0.4435 | 0.6556 | 0.4441 |
No log | 4.7647 | 324 | 0.4464 | 0.6594 | 0.4470 |
No log | 4.7941 | 326 | 0.4506 | 0.6658 | 0.4512 |
No log | 4.8235 | 328 | 0.4520 | 0.6636 | 0.4526 |
No log | 4.8529 | 330 | 0.4535 | 0.6651 | 0.4541 |
No log | 4.8824 | 332 | 0.4531 | 0.6651 | 0.4537 |
No log | 4.9118 | 334 | 0.4538 | 0.6651 | 0.4544 |
No log | 4.9412 | 336 | 0.4551 | 0.6660 | 0.4557 |
No log | 4.9706 | 338 | 0.4553 | 0.6660 | 0.4559 |
No log | 5.0 | 340 | 0.4551 | 0.6660 | 0.4557 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_prompt_adherence_task5_fold4
Base model
google-bert/bert-base-cased