Edit model card

bert_baseline_prompt_adherence_task5_fold4

This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4551
  • Qwk: 0.6660
  • Mse: 0.4557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0294 2 2.5264 0.0 2.5267
No log 0.0588 4 2.0698 0.0038 2.0712
No log 0.0882 6 1.6692 0.0 1.6712
No log 0.1176 8 1.2106 0.0 1.2131
No log 0.1471 10 0.9954 0.0691 0.9982
No log 0.1765 12 0.8820 0.2541 0.8852
No log 0.2059 14 0.8417 0.2650 0.8448
No log 0.2353 16 0.8815 0.2322 0.8848
No log 0.2647 18 0.8194 0.2689 0.8221
No log 0.2941 20 0.7283 0.3098 0.7301
No log 0.3235 22 0.7901 0.2583 0.7914
No log 0.3529 24 0.6593 0.3801 0.6606
No log 0.3824 26 0.7245 0.5177 0.7257
No log 0.4118 28 0.6890 0.5405 0.6901
No log 0.4412 30 0.6153 0.5085 0.6163
No log 0.4706 32 0.5972 0.4415 0.5983
No log 0.5 34 0.6245 0.4454 0.6258
No log 0.5294 36 0.6180 0.4472 0.6194
No log 0.5588 38 0.6077 0.4471 0.6092
No log 0.5882 40 0.5946 0.4562 0.5961
No log 0.6176 42 0.5627 0.4472 0.5640
No log 0.6471 44 0.5460 0.5244 0.5469
No log 0.6765 46 0.6361 0.4065 0.6367
No log 0.7059 48 0.5804 0.4599 0.5810
No log 0.7353 50 0.5607 0.5779 0.5615
No log 0.7647 52 0.6101 0.6093 0.6110
No log 0.7941 54 0.5810 0.5759 0.5820
No log 0.8235 56 0.5469 0.5709 0.5479
No log 0.8529 58 0.5256 0.4866 0.5264
No log 0.8824 60 0.5980 0.4283 0.5987
No log 0.9118 62 0.6064 0.4232 0.6072
No log 0.9412 64 0.5125 0.4985 0.5135
No log 0.9706 66 0.5452 0.5979 0.5463
No log 1.0 68 0.5796 0.6272 0.5808
No log 1.0294 70 0.5182 0.5908 0.5192
No log 1.0588 72 0.5140 0.5991 0.5149
No log 1.0882 74 0.5245 0.6207 0.5253
No log 1.1176 76 0.5014 0.6022 0.5021
No log 1.1471 78 0.5038 0.5943 0.5044
No log 1.1765 80 0.5171 0.6163 0.5177
No log 1.2059 82 0.6261 0.6760 0.6268
No log 1.2353 84 0.6490 0.6752 0.6499
No log 1.2647 86 0.5317 0.6323 0.5326
No log 1.2941 88 0.5102 0.5013 0.5110
No log 1.3235 90 0.5808 0.4495 0.5815
No log 1.3529 92 0.5643 0.4550 0.5651
No log 1.3824 94 0.5106 0.4999 0.5117
No log 1.4118 96 0.5167 0.5695 0.5179
No log 1.4412 98 0.5727 0.6042 0.5738
No log 1.4706 100 0.6069 0.6507 0.6080
No log 1.5 102 0.5390 0.6260 0.5400
No log 1.5294 104 0.4888 0.5835 0.4897
No log 1.5588 106 0.4900 0.5230 0.4907
No log 1.5882 108 0.4817 0.5590 0.4823
No log 1.6176 110 0.4832 0.5992 0.4838
No log 1.6471 112 0.4945 0.5880 0.4949
No log 1.6765 114 0.5089 0.5723 0.5092
No log 1.7059 116 0.5011 0.6063 0.5015
No log 1.7353 118 0.5326 0.6648 0.5331
No log 1.7647 120 0.5306 0.6618 0.5311
No log 1.7941 122 0.5076 0.6601 0.5082
No log 1.8235 124 0.4719 0.5863 0.4724
No log 1.8529 126 0.4719 0.5670 0.4724
No log 1.8824 128 0.4620 0.5819 0.4625
No log 1.9118 130 0.4811 0.6184 0.4818
No log 1.9412 132 0.4936 0.6386 0.4944
No log 1.9706 134 0.4668 0.5933 0.4676
No log 2.0 136 0.4560 0.5843 0.4566
No log 2.0294 138 0.4566 0.5641 0.4572
No log 2.0588 140 0.4535 0.5968 0.4542
No log 2.0882 142 0.4773 0.6510 0.4780
No log 2.1176 144 0.4823 0.6678 0.4829
No log 2.1471 146 0.4443 0.6390 0.4448
No log 2.1765 148 0.4879 0.5093 0.4881
No log 2.2059 150 0.5565 0.4746 0.5565
No log 2.2353 152 0.5079 0.5090 0.5080
No log 2.2647 154 0.4413 0.6192 0.4417
No log 2.2941 156 0.4994 0.6877 0.5000
No log 2.3235 158 0.5384 0.6969 0.5390
No log 2.3529 160 0.5459 0.7049 0.5465
No log 2.3824 162 0.4896 0.6931 0.4902
No log 2.4118 164 0.4515 0.6166 0.4521
No log 2.4412 166 0.4542 0.5582 0.4548
No log 2.4706 168 0.4744 0.5231 0.4750
No log 2.5 170 0.4727 0.5311 0.4734
No log 2.5294 172 0.4686 0.5308 0.4692
No log 2.5588 174 0.4522 0.5758 0.4528
No log 2.5882 176 0.4710 0.6394 0.4716
No log 2.6176 178 0.5015 0.6718 0.5021
No log 2.6471 180 0.4992 0.6662 0.4996
No log 2.6765 182 0.4766 0.6586 0.4770
No log 2.7059 184 0.4565 0.6203 0.4568
No log 2.7353 186 0.4604 0.5839 0.4607
No log 2.7647 188 0.4642 0.5807 0.4645
No log 2.7941 190 0.4823 0.5543 0.4825
No log 2.8235 192 0.4684 0.5730 0.4686
No log 2.8529 194 0.4621 0.6599 0.4624
No log 2.8824 196 0.5061 0.6894 0.5065
No log 2.9118 198 0.6049 0.7179 0.6053
No log 2.9412 200 0.6139 0.7144 0.6143
No log 2.9706 202 0.5494 0.7066 0.5499
No log 3.0 204 0.4878 0.6852 0.4883
No log 3.0294 206 0.4412 0.6324 0.4416
No log 3.0588 208 0.4376 0.5864 0.4381
No log 3.0882 210 0.4372 0.5787 0.4378
No log 3.1176 212 0.4362 0.5976 0.4368
No log 3.1471 214 0.4480 0.6297 0.4486
No log 3.1765 216 0.4506 0.6470 0.4512
No log 3.2059 218 0.4538 0.6630 0.4543
No log 3.2353 220 0.4517 0.6553 0.4523
No log 3.2647 222 0.4429 0.6528 0.4434
No log 3.2941 224 0.4419 0.6274 0.4423
No log 3.3235 226 0.4443 0.5986 0.4447
No log 3.3529 228 0.4438 0.6168 0.4442
No log 3.3824 230 0.4436 0.6385 0.4441
No log 3.4118 232 0.4517 0.6535 0.4522
No log 3.4412 234 0.4706 0.6768 0.4711
No log 3.4706 236 0.4663 0.6793 0.4668
No log 3.5 238 0.4484 0.6485 0.4489
No log 3.5294 240 0.4432 0.6242 0.4437
No log 3.5588 242 0.4516 0.5690 0.4521
No log 3.5882 244 0.4524 0.5692 0.4530
No log 3.6176 246 0.4532 0.6189 0.4538
No log 3.6471 248 0.4842 0.6598 0.4849
No log 3.6765 250 0.5276 0.7093 0.5283
No log 3.7059 252 0.5211 0.7109 0.5218
No log 3.7353 254 0.4884 0.7045 0.4891
No log 3.7647 256 0.4540 0.6519 0.4546
No log 3.7941 258 0.4426 0.5963 0.4431
No log 3.8235 260 0.4721 0.5300 0.4724
No log 3.8529 262 0.4893 0.5089 0.4895
No log 3.8824 264 0.4702 0.5384 0.4705
No log 3.9118 266 0.4426 0.5917 0.4430
No log 3.9412 268 0.4437 0.6570 0.4442
No log 3.9706 270 0.4933 0.6938 0.4939
No log 4.0 272 0.5444 0.7055 0.5451
No log 4.0294 274 0.5539 0.7027 0.5546
No log 4.0588 276 0.5254 0.7033 0.5262
No log 4.0882 278 0.4805 0.6873 0.4812
No log 4.1176 280 0.4416 0.6569 0.4422
No log 4.1471 282 0.4319 0.6089 0.4323
No log 4.1765 284 0.4440 0.5684 0.4444
No log 4.2059 286 0.4576 0.5526 0.4579
No log 4.2353 288 0.4602 0.5469 0.4605
No log 4.2647 290 0.4573 0.5491 0.4576
No log 4.2941 292 0.4470 0.5685 0.4474
No log 4.3235 294 0.4351 0.5867 0.4355
No log 4.3529 296 0.4371 0.6428 0.4377
No log 4.3824 298 0.4542 0.6719 0.4549
No log 4.4118 300 0.4759 0.6888 0.4766
No log 4.4412 302 0.4875 0.7017 0.4882
No log 4.4706 304 0.4885 0.7005 0.4892
No log 4.5 306 0.4803 0.6927 0.4810
No log 4.5294 308 0.4695 0.6736 0.4702
No log 4.5588 310 0.4570 0.6633 0.4577
No log 4.5882 312 0.4506 0.6443 0.4512
No log 4.6176 314 0.4450 0.6455 0.4456
No log 4.6471 316 0.4427 0.6507 0.4433
No log 4.6765 318 0.4412 0.6514 0.4418
No log 4.7059 320 0.4426 0.6558 0.4432
No log 4.7353 322 0.4435 0.6556 0.4441
No log 4.7647 324 0.4464 0.6594 0.4470
No log 4.7941 326 0.4506 0.6658 0.4512
No log 4.8235 328 0.4520 0.6636 0.4526
No log 4.8529 330 0.4535 0.6651 0.4541
No log 4.8824 332 0.4531 0.6651 0.4537
No log 4.9118 334 0.4538 0.6651 0.4544
No log 4.9412 336 0.4551 0.6660 0.4557
No log 4.9706 338 0.4553 0.6660 0.4559
No log 5.0 340 0.4551 0.6660 0.4557

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/bert_baseline_prompt_adherence_task5_fold4

Finetuned
(1906)
this model