bert_baseline_prompt_adherence_task6_fold1
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3483
- Qwk: 0.7709
- Mse: 0.3483
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0294 | 2 | 1.7206 | 0.0 | 1.7206 |
No log | 0.0588 | 4 | 1.5033 | -0.0568 | 1.5033 |
No log | 0.0882 | 6 | 1.3304 | 0.0061 | 1.3304 |
No log | 0.1176 | 8 | 1.1174 | 0.0 | 1.1174 |
No log | 0.1471 | 10 | 1.0152 | 0.0 | 1.0152 |
No log | 0.1765 | 12 | 0.9599 | 0.0 | 0.9599 |
No log | 0.2059 | 14 | 0.9133 | 0.0154 | 0.9133 |
No log | 0.2353 | 16 | 0.8781 | 0.2072 | 0.8781 |
No log | 0.2647 | 18 | 0.8180 | 0.3561 | 0.8180 |
No log | 0.2941 | 20 | 0.7972 | 0.4055 | 0.7972 |
No log | 0.3235 | 22 | 0.7928 | 0.4281 | 0.7928 |
No log | 0.3529 | 24 | 0.6695 | 0.5057 | 0.6695 |
No log | 0.3824 | 26 | 0.7443 | 0.5556 | 0.7443 |
No log | 0.4118 | 28 | 0.5712 | 0.5740 | 0.5712 |
No log | 0.4412 | 30 | 0.7065 | 0.3924 | 0.7065 |
No log | 0.4706 | 32 | 0.8144 | 0.3201 | 0.8144 |
No log | 0.5 | 34 | 0.5210 | 0.5177 | 0.5210 |
No log | 0.5294 | 36 | 0.6962 | 0.6167 | 0.6962 |
No log | 0.5588 | 38 | 0.8816 | 0.5814 | 0.8816 |
No log | 0.5882 | 40 | 0.7034 | 0.6286 | 0.7034 |
No log | 0.6176 | 42 | 0.4509 | 0.6130 | 0.4509 |
No log | 0.6471 | 44 | 0.4571 | 0.5712 | 0.4571 |
No log | 0.6765 | 46 | 0.4399 | 0.5999 | 0.4399 |
No log | 0.7059 | 48 | 0.4605 | 0.6458 | 0.4605 |
No log | 0.7353 | 50 | 0.5082 | 0.6569 | 0.5082 |
No log | 0.7647 | 52 | 0.4550 | 0.6573 | 0.4550 |
No log | 0.7941 | 54 | 0.4115 | 0.6558 | 0.4115 |
No log | 0.8235 | 56 | 0.3883 | 0.6556 | 0.3883 |
No log | 0.8529 | 58 | 0.4411 | 0.7388 | 0.4411 |
No log | 0.8824 | 60 | 0.4843 | 0.7395 | 0.4843 |
No log | 0.9118 | 62 | 0.5527 | 0.7123 | 0.5527 |
No log | 0.9412 | 64 | 0.4894 | 0.7109 | 0.4894 |
No log | 0.9706 | 66 | 0.3826 | 0.6719 | 0.3826 |
No log | 1.0 | 68 | 0.4572 | 0.5523 | 0.4572 |
No log | 1.0294 | 70 | 0.4169 | 0.5909 | 0.4169 |
No log | 1.0588 | 72 | 0.3754 | 0.6785 | 0.3754 |
No log | 1.0882 | 74 | 0.4122 | 0.7075 | 0.4122 |
No log | 1.1176 | 76 | 0.3864 | 0.6969 | 0.3864 |
No log | 1.1471 | 78 | 0.3631 | 0.6895 | 0.3631 |
No log | 1.1765 | 80 | 0.3552 | 0.6448 | 0.3552 |
No log | 1.2059 | 82 | 0.3496 | 0.6616 | 0.3496 |
No log | 1.2353 | 84 | 0.3693 | 0.6815 | 0.3693 |
No log | 1.2647 | 86 | 0.3708 | 0.7110 | 0.3708 |
No log | 1.2941 | 88 | 0.3558 | 0.7021 | 0.3558 |
No log | 1.3235 | 90 | 0.3680 | 0.6520 | 0.3680 |
No log | 1.3529 | 92 | 0.3665 | 0.6323 | 0.3665 |
No log | 1.3824 | 94 | 0.3459 | 0.6917 | 0.3459 |
No log | 1.4118 | 96 | 0.3493 | 0.7065 | 0.3493 |
No log | 1.4412 | 98 | 0.3874 | 0.7281 | 0.3874 |
No log | 1.4706 | 100 | 0.3547 | 0.6976 | 0.3547 |
No log | 1.5 | 102 | 0.3454 | 0.6482 | 0.3454 |
No log | 1.5294 | 104 | 0.3442 | 0.6641 | 0.3442 |
No log | 1.5588 | 106 | 0.3443 | 0.6889 | 0.3443 |
No log | 1.5882 | 108 | 0.3447 | 0.6931 | 0.3447 |
No log | 1.6176 | 110 | 0.3375 | 0.6753 | 0.3375 |
No log | 1.6471 | 112 | 0.3559 | 0.7070 | 0.3559 |
No log | 1.6765 | 114 | 0.4743 | 0.7688 | 0.4743 |
No log | 1.7059 | 116 | 0.5174 | 0.7953 | 0.5174 |
No log | 1.7353 | 118 | 0.3931 | 0.7381 | 0.3931 |
No log | 1.7647 | 120 | 0.3495 | 0.6729 | 0.3495 |
No log | 1.7941 | 122 | 0.4099 | 0.5552 | 0.4099 |
No log | 1.8235 | 124 | 0.3735 | 0.5992 | 0.3735 |
No log | 1.8529 | 126 | 0.3560 | 0.7159 | 0.3560 |
No log | 1.8824 | 128 | 0.3993 | 0.7509 | 0.3993 |
No log | 1.9118 | 130 | 0.3967 | 0.7563 | 0.3967 |
No log | 1.9412 | 132 | 0.3636 | 0.7410 | 0.3636 |
No log | 1.9706 | 134 | 0.3380 | 0.7102 | 0.3380 |
No log | 2.0 | 136 | 0.3442 | 0.7268 | 0.3442 |
No log | 2.0294 | 138 | 0.3866 | 0.7569 | 0.3866 |
No log | 2.0588 | 140 | 0.3678 | 0.7407 | 0.3678 |
No log | 2.0882 | 142 | 0.3345 | 0.7249 | 0.3345 |
No log | 2.1176 | 144 | 0.3474 | 0.7483 | 0.3474 |
No log | 2.1471 | 146 | 0.3337 | 0.7362 | 0.3337 |
No log | 2.1765 | 148 | 0.3404 | 0.7402 | 0.3404 |
No log | 2.2059 | 150 | 0.3990 | 0.7838 | 0.3990 |
No log | 2.2353 | 152 | 0.4770 | 0.7981 | 0.4770 |
No log | 2.2647 | 154 | 0.4237 | 0.7933 | 0.4237 |
No log | 2.2941 | 156 | 0.3341 | 0.7285 | 0.3341 |
No log | 2.3235 | 158 | 0.3347 | 0.6718 | 0.3347 |
No log | 2.3529 | 160 | 0.3244 | 0.6752 | 0.3244 |
No log | 2.3824 | 162 | 0.3271 | 0.7362 | 0.3271 |
No log | 2.4118 | 164 | 0.3959 | 0.7689 | 0.3959 |
No log | 2.4412 | 166 | 0.3846 | 0.7661 | 0.3846 |
No log | 2.4706 | 168 | 0.3289 | 0.7316 | 0.3289 |
No log | 2.5 | 170 | 0.3332 | 0.6498 | 0.3332 |
No log | 2.5294 | 172 | 0.3293 | 0.6551 | 0.3293 |
No log | 2.5588 | 174 | 0.3295 | 0.7295 | 0.3295 |
No log | 2.5882 | 176 | 0.3439 | 0.7415 | 0.3439 |
No log | 2.6176 | 178 | 0.3350 | 0.7365 | 0.3350 |
No log | 2.6471 | 180 | 0.3433 | 0.7320 | 0.3433 |
No log | 2.6765 | 182 | 0.3310 | 0.7208 | 0.3310 |
No log | 2.7059 | 184 | 0.3325 | 0.7218 | 0.3325 |
No log | 2.7353 | 186 | 0.3550 | 0.7433 | 0.3550 |
No log | 2.7647 | 188 | 0.3514 | 0.7437 | 0.3514 |
No log | 2.7941 | 190 | 0.3655 | 0.7599 | 0.3655 |
No log | 2.8235 | 192 | 0.3835 | 0.7782 | 0.3835 |
No log | 2.8529 | 194 | 0.3665 | 0.7718 | 0.3665 |
No log | 2.8824 | 196 | 0.3414 | 0.7601 | 0.3414 |
No log | 2.9118 | 198 | 0.3329 | 0.7488 | 0.3329 |
No log | 2.9412 | 200 | 0.3166 | 0.7122 | 0.3166 |
No log | 2.9706 | 202 | 0.3198 | 0.7204 | 0.3198 |
No log | 3.0 | 204 | 0.3364 | 0.7563 | 0.3364 |
No log | 3.0294 | 206 | 0.3291 | 0.7514 | 0.3291 |
No log | 3.0588 | 208 | 0.3120 | 0.7106 | 0.3120 |
No log | 3.0882 | 210 | 0.3121 | 0.7081 | 0.3121 |
No log | 3.1176 | 212 | 0.3164 | 0.7263 | 0.3164 |
No log | 3.1471 | 214 | 0.3561 | 0.7622 | 0.3561 |
No log | 3.1765 | 216 | 0.3956 | 0.7647 | 0.3956 |
No log | 3.2059 | 218 | 0.3742 | 0.7583 | 0.3742 |
No log | 3.2353 | 220 | 0.3269 | 0.7344 | 0.3269 |
No log | 3.2647 | 222 | 0.3215 | 0.7275 | 0.3215 |
No log | 3.2941 | 224 | 0.3439 | 0.7407 | 0.3439 |
No log | 3.3235 | 226 | 0.3759 | 0.7547 | 0.3759 |
No log | 3.3529 | 228 | 0.3910 | 0.7616 | 0.3910 |
No log | 3.3824 | 230 | 0.3604 | 0.7542 | 0.3604 |
No log | 3.4118 | 232 | 0.3171 | 0.7255 | 0.3171 |
No log | 3.4412 | 234 | 0.3171 | 0.6765 | 0.3171 |
No log | 3.4706 | 236 | 0.3155 | 0.6830 | 0.3155 |
No log | 3.5 | 238 | 0.3157 | 0.7278 | 0.3157 |
No log | 3.5294 | 240 | 0.3447 | 0.7645 | 0.3447 |
No log | 3.5588 | 242 | 0.4145 | 0.7948 | 0.4145 |
No log | 3.5882 | 244 | 0.4356 | 0.8078 | 0.4356 |
No log | 3.6176 | 246 | 0.3964 | 0.7948 | 0.3964 |
No log | 3.6471 | 248 | 0.3397 | 0.7680 | 0.3397 |
No log | 3.6765 | 250 | 0.3298 | 0.75 | 0.3298 |
No log | 3.7059 | 252 | 0.3189 | 0.7252 | 0.3189 |
No log | 3.7353 | 254 | 0.3202 | 0.7273 | 0.3202 |
No log | 3.7647 | 256 | 0.3258 | 0.7400 | 0.3258 |
No log | 3.7941 | 258 | 0.3383 | 0.7683 | 0.3383 |
No log | 3.8235 | 260 | 0.3312 | 0.7575 | 0.3312 |
No log | 3.8529 | 262 | 0.3194 | 0.7393 | 0.3194 |
No log | 3.8824 | 264 | 0.3173 | 0.7337 | 0.3173 |
No log | 3.9118 | 266 | 0.3204 | 0.7467 | 0.3204 |
No log | 3.9412 | 268 | 0.3278 | 0.7535 | 0.3278 |
No log | 3.9706 | 270 | 0.3446 | 0.7742 | 0.3446 |
No log | 4.0 | 272 | 0.3754 | 0.7818 | 0.3754 |
No log | 4.0294 | 274 | 0.3902 | 0.7901 | 0.3902 |
No log | 4.0588 | 276 | 0.3866 | 0.7928 | 0.3866 |
No log | 4.0882 | 278 | 0.3708 | 0.7719 | 0.3708 |
No log | 4.1176 | 280 | 0.3520 | 0.7694 | 0.3520 |
No log | 4.1471 | 282 | 0.3317 | 0.7626 | 0.3317 |
No log | 4.1765 | 284 | 0.3284 | 0.7561 | 0.3284 |
No log | 4.2059 | 286 | 0.3229 | 0.7446 | 0.3229 |
No log | 4.2353 | 288 | 0.3243 | 0.7478 | 0.3243 |
No log | 4.2647 | 290 | 0.3228 | 0.7406 | 0.3228 |
No log | 4.2941 | 292 | 0.3204 | 0.7364 | 0.3204 |
No log | 4.3235 | 294 | 0.3248 | 0.7482 | 0.3248 |
No log | 4.3529 | 296 | 0.3319 | 0.7618 | 0.3319 |
No log | 4.3824 | 298 | 0.3387 | 0.7628 | 0.3387 |
No log | 4.4118 | 300 | 0.3532 | 0.7688 | 0.3532 |
No log | 4.4412 | 302 | 0.3607 | 0.7700 | 0.3607 |
No log | 4.4706 | 304 | 0.3558 | 0.7660 | 0.3558 |
No log | 4.5 | 306 | 0.3459 | 0.7664 | 0.3459 |
No log | 4.5294 | 308 | 0.3381 | 0.7619 | 0.3381 |
No log | 4.5588 | 310 | 0.3317 | 0.7557 | 0.3317 |
No log | 4.5882 | 312 | 0.3299 | 0.7547 | 0.3299 |
No log | 4.6176 | 314 | 0.3353 | 0.7637 | 0.3353 |
No log | 4.6471 | 316 | 0.3370 | 0.7644 | 0.3370 |
No log | 4.6765 | 318 | 0.3350 | 0.7653 | 0.3350 |
No log | 4.7059 | 320 | 0.3362 | 0.7638 | 0.3362 |
No log | 4.7353 | 322 | 0.3409 | 0.7648 | 0.3409 |
No log | 4.7647 | 324 | 0.3437 | 0.7648 | 0.3437 |
No log | 4.7941 | 326 | 0.3476 | 0.7697 | 0.3476 |
No log | 4.8235 | 328 | 0.3486 | 0.7690 | 0.3486 |
No log | 4.8529 | 330 | 0.3493 | 0.7709 | 0.3493 |
No log | 4.8824 | 332 | 0.3489 | 0.7709 | 0.3489 |
No log | 4.9118 | 334 | 0.3487 | 0.7709 | 0.3487 |
No log | 4.9412 | 336 | 0.3479 | 0.7690 | 0.3479 |
No log | 4.9706 | 338 | 0.3480 | 0.7690 | 0.3480 |
No log | 5.0 | 340 | 0.3483 | 0.7709 | 0.3483 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_prompt_adherence_task6_fold1
Base model
google-bert/bert-base-cased