Edit model card

bert_baseline_prompt_adherence_task6_fold1

This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3483
  • Qwk: 0.7709
  • Mse: 0.3483

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.0294 2 1.7206 0.0 1.7206
No log 0.0588 4 1.5033 -0.0568 1.5033
No log 0.0882 6 1.3304 0.0061 1.3304
No log 0.1176 8 1.1174 0.0 1.1174
No log 0.1471 10 1.0152 0.0 1.0152
No log 0.1765 12 0.9599 0.0 0.9599
No log 0.2059 14 0.9133 0.0154 0.9133
No log 0.2353 16 0.8781 0.2072 0.8781
No log 0.2647 18 0.8180 0.3561 0.8180
No log 0.2941 20 0.7972 0.4055 0.7972
No log 0.3235 22 0.7928 0.4281 0.7928
No log 0.3529 24 0.6695 0.5057 0.6695
No log 0.3824 26 0.7443 0.5556 0.7443
No log 0.4118 28 0.5712 0.5740 0.5712
No log 0.4412 30 0.7065 0.3924 0.7065
No log 0.4706 32 0.8144 0.3201 0.8144
No log 0.5 34 0.5210 0.5177 0.5210
No log 0.5294 36 0.6962 0.6167 0.6962
No log 0.5588 38 0.8816 0.5814 0.8816
No log 0.5882 40 0.7034 0.6286 0.7034
No log 0.6176 42 0.4509 0.6130 0.4509
No log 0.6471 44 0.4571 0.5712 0.4571
No log 0.6765 46 0.4399 0.5999 0.4399
No log 0.7059 48 0.4605 0.6458 0.4605
No log 0.7353 50 0.5082 0.6569 0.5082
No log 0.7647 52 0.4550 0.6573 0.4550
No log 0.7941 54 0.4115 0.6558 0.4115
No log 0.8235 56 0.3883 0.6556 0.3883
No log 0.8529 58 0.4411 0.7388 0.4411
No log 0.8824 60 0.4843 0.7395 0.4843
No log 0.9118 62 0.5527 0.7123 0.5527
No log 0.9412 64 0.4894 0.7109 0.4894
No log 0.9706 66 0.3826 0.6719 0.3826
No log 1.0 68 0.4572 0.5523 0.4572
No log 1.0294 70 0.4169 0.5909 0.4169
No log 1.0588 72 0.3754 0.6785 0.3754
No log 1.0882 74 0.4122 0.7075 0.4122
No log 1.1176 76 0.3864 0.6969 0.3864
No log 1.1471 78 0.3631 0.6895 0.3631
No log 1.1765 80 0.3552 0.6448 0.3552
No log 1.2059 82 0.3496 0.6616 0.3496
No log 1.2353 84 0.3693 0.6815 0.3693
No log 1.2647 86 0.3708 0.7110 0.3708
No log 1.2941 88 0.3558 0.7021 0.3558
No log 1.3235 90 0.3680 0.6520 0.3680
No log 1.3529 92 0.3665 0.6323 0.3665
No log 1.3824 94 0.3459 0.6917 0.3459
No log 1.4118 96 0.3493 0.7065 0.3493
No log 1.4412 98 0.3874 0.7281 0.3874
No log 1.4706 100 0.3547 0.6976 0.3547
No log 1.5 102 0.3454 0.6482 0.3454
No log 1.5294 104 0.3442 0.6641 0.3442
No log 1.5588 106 0.3443 0.6889 0.3443
No log 1.5882 108 0.3447 0.6931 0.3447
No log 1.6176 110 0.3375 0.6753 0.3375
No log 1.6471 112 0.3559 0.7070 0.3559
No log 1.6765 114 0.4743 0.7688 0.4743
No log 1.7059 116 0.5174 0.7953 0.5174
No log 1.7353 118 0.3931 0.7381 0.3931
No log 1.7647 120 0.3495 0.6729 0.3495
No log 1.7941 122 0.4099 0.5552 0.4099
No log 1.8235 124 0.3735 0.5992 0.3735
No log 1.8529 126 0.3560 0.7159 0.3560
No log 1.8824 128 0.3993 0.7509 0.3993
No log 1.9118 130 0.3967 0.7563 0.3967
No log 1.9412 132 0.3636 0.7410 0.3636
No log 1.9706 134 0.3380 0.7102 0.3380
No log 2.0 136 0.3442 0.7268 0.3442
No log 2.0294 138 0.3866 0.7569 0.3866
No log 2.0588 140 0.3678 0.7407 0.3678
No log 2.0882 142 0.3345 0.7249 0.3345
No log 2.1176 144 0.3474 0.7483 0.3474
No log 2.1471 146 0.3337 0.7362 0.3337
No log 2.1765 148 0.3404 0.7402 0.3404
No log 2.2059 150 0.3990 0.7838 0.3990
No log 2.2353 152 0.4770 0.7981 0.4770
No log 2.2647 154 0.4237 0.7933 0.4237
No log 2.2941 156 0.3341 0.7285 0.3341
No log 2.3235 158 0.3347 0.6718 0.3347
No log 2.3529 160 0.3244 0.6752 0.3244
No log 2.3824 162 0.3271 0.7362 0.3271
No log 2.4118 164 0.3959 0.7689 0.3959
No log 2.4412 166 0.3846 0.7661 0.3846
No log 2.4706 168 0.3289 0.7316 0.3289
No log 2.5 170 0.3332 0.6498 0.3332
No log 2.5294 172 0.3293 0.6551 0.3293
No log 2.5588 174 0.3295 0.7295 0.3295
No log 2.5882 176 0.3439 0.7415 0.3439
No log 2.6176 178 0.3350 0.7365 0.3350
No log 2.6471 180 0.3433 0.7320 0.3433
No log 2.6765 182 0.3310 0.7208 0.3310
No log 2.7059 184 0.3325 0.7218 0.3325
No log 2.7353 186 0.3550 0.7433 0.3550
No log 2.7647 188 0.3514 0.7437 0.3514
No log 2.7941 190 0.3655 0.7599 0.3655
No log 2.8235 192 0.3835 0.7782 0.3835
No log 2.8529 194 0.3665 0.7718 0.3665
No log 2.8824 196 0.3414 0.7601 0.3414
No log 2.9118 198 0.3329 0.7488 0.3329
No log 2.9412 200 0.3166 0.7122 0.3166
No log 2.9706 202 0.3198 0.7204 0.3198
No log 3.0 204 0.3364 0.7563 0.3364
No log 3.0294 206 0.3291 0.7514 0.3291
No log 3.0588 208 0.3120 0.7106 0.3120
No log 3.0882 210 0.3121 0.7081 0.3121
No log 3.1176 212 0.3164 0.7263 0.3164
No log 3.1471 214 0.3561 0.7622 0.3561
No log 3.1765 216 0.3956 0.7647 0.3956
No log 3.2059 218 0.3742 0.7583 0.3742
No log 3.2353 220 0.3269 0.7344 0.3269
No log 3.2647 222 0.3215 0.7275 0.3215
No log 3.2941 224 0.3439 0.7407 0.3439
No log 3.3235 226 0.3759 0.7547 0.3759
No log 3.3529 228 0.3910 0.7616 0.3910
No log 3.3824 230 0.3604 0.7542 0.3604
No log 3.4118 232 0.3171 0.7255 0.3171
No log 3.4412 234 0.3171 0.6765 0.3171
No log 3.4706 236 0.3155 0.6830 0.3155
No log 3.5 238 0.3157 0.7278 0.3157
No log 3.5294 240 0.3447 0.7645 0.3447
No log 3.5588 242 0.4145 0.7948 0.4145
No log 3.5882 244 0.4356 0.8078 0.4356
No log 3.6176 246 0.3964 0.7948 0.3964
No log 3.6471 248 0.3397 0.7680 0.3397
No log 3.6765 250 0.3298 0.75 0.3298
No log 3.7059 252 0.3189 0.7252 0.3189
No log 3.7353 254 0.3202 0.7273 0.3202
No log 3.7647 256 0.3258 0.7400 0.3258
No log 3.7941 258 0.3383 0.7683 0.3383
No log 3.8235 260 0.3312 0.7575 0.3312
No log 3.8529 262 0.3194 0.7393 0.3194
No log 3.8824 264 0.3173 0.7337 0.3173
No log 3.9118 266 0.3204 0.7467 0.3204
No log 3.9412 268 0.3278 0.7535 0.3278
No log 3.9706 270 0.3446 0.7742 0.3446
No log 4.0 272 0.3754 0.7818 0.3754
No log 4.0294 274 0.3902 0.7901 0.3902
No log 4.0588 276 0.3866 0.7928 0.3866
No log 4.0882 278 0.3708 0.7719 0.3708
No log 4.1176 280 0.3520 0.7694 0.3520
No log 4.1471 282 0.3317 0.7626 0.3317
No log 4.1765 284 0.3284 0.7561 0.3284
No log 4.2059 286 0.3229 0.7446 0.3229
No log 4.2353 288 0.3243 0.7478 0.3243
No log 4.2647 290 0.3228 0.7406 0.3228
No log 4.2941 292 0.3204 0.7364 0.3204
No log 4.3235 294 0.3248 0.7482 0.3248
No log 4.3529 296 0.3319 0.7618 0.3319
No log 4.3824 298 0.3387 0.7628 0.3387
No log 4.4118 300 0.3532 0.7688 0.3532
No log 4.4412 302 0.3607 0.7700 0.3607
No log 4.4706 304 0.3558 0.7660 0.3558
No log 4.5 306 0.3459 0.7664 0.3459
No log 4.5294 308 0.3381 0.7619 0.3381
No log 4.5588 310 0.3317 0.7557 0.3317
No log 4.5882 312 0.3299 0.7547 0.3299
No log 4.6176 314 0.3353 0.7637 0.3353
No log 4.6471 316 0.3370 0.7644 0.3370
No log 4.6765 318 0.3350 0.7653 0.3350
No log 4.7059 320 0.3362 0.7638 0.3362
No log 4.7353 322 0.3409 0.7648 0.3409
No log 4.7647 324 0.3437 0.7648 0.3437
No log 4.7941 326 0.3476 0.7697 0.3476
No log 4.8235 328 0.3486 0.7690 0.3486
No log 4.8529 330 0.3493 0.7709 0.3493
No log 4.8824 332 0.3489 0.7709 0.3489
No log 4.9118 334 0.3487 0.7709 0.3487
No log 4.9412 336 0.3479 0.7690 0.3479
No log 4.9706 338 0.3480 0.7690 0.3480
No log 5.0 340 0.3483 0.7709 0.3483

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/bert_baseline_prompt_adherence_task6_fold1

Finetuned
(1906)
this model