bert_baseline_prompt_adherence_task6_fold2
This model is a fine-tuned version of google-bert/bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3525
- Qwk: 0.7953
- Mse: 0.3525
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.0294 | 2 | 1.6118 | 0.0 | 1.6118 |
No log | 0.0588 | 4 | 1.3799 | -0.0110 | 1.3799 |
No log | 0.0882 | 6 | 1.2251 | 0.0179 | 1.2251 |
No log | 0.1176 | 8 | 1.0476 | 0.0065 | 1.0476 |
No log | 0.1471 | 10 | 0.9100 | 0.0065 | 0.9100 |
No log | 0.1765 | 12 | 0.8097 | 0.0065 | 0.8097 |
No log | 0.2059 | 14 | 0.7294 | 0.0218 | 0.7294 |
No log | 0.2353 | 16 | 0.7148 | 0.4978 | 0.7148 |
No log | 0.2647 | 18 | 0.6568 | 0.5217 | 0.6568 |
No log | 0.2941 | 20 | 0.6089 | 0.5495 | 0.6089 |
No log | 0.3235 | 22 | 0.4999 | 0.4617 | 0.4999 |
No log | 0.3529 | 24 | 0.4727 | 0.4888 | 0.4727 |
No log | 0.3824 | 26 | 0.5436 | 0.6270 | 0.5436 |
No log | 0.4118 | 28 | 0.9257 | 0.5306 | 0.9257 |
No log | 0.4412 | 30 | 0.7732 | 0.5366 | 0.7732 |
No log | 0.4706 | 32 | 0.5754 | 0.5617 | 0.5754 |
No log | 0.5 | 34 | 0.5762 | 0.1928 | 0.5762 |
No log | 0.5294 | 36 | 0.5593 | 0.2555 | 0.5593 |
No log | 0.5588 | 38 | 0.5070 | 0.2862 | 0.5070 |
No log | 0.5882 | 40 | 0.4235 | 0.5970 | 0.4235 |
No log | 0.6176 | 42 | 0.4205 | 0.6708 | 0.4205 |
No log | 0.6471 | 44 | 0.6669 | 0.6425 | 0.6669 |
No log | 0.6765 | 46 | 0.7034 | 0.6499 | 0.7034 |
No log | 0.7059 | 48 | 0.4803 | 0.6968 | 0.4803 |
No log | 0.7353 | 50 | 0.3945 | 0.6403 | 0.3945 |
No log | 0.7647 | 52 | 0.4329 | 0.5236 | 0.4329 |
No log | 0.7941 | 54 | 0.3813 | 0.6297 | 0.3813 |
No log | 0.8235 | 56 | 0.4339 | 0.7069 | 0.4339 |
No log | 0.8529 | 58 | 0.5572 | 0.6500 | 0.5572 |
No log | 0.8824 | 60 | 0.5802 | 0.6521 | 0.5802 |
No log | 0.9118 | 62 | 0.4628 | 0.7016 | 0.4628 |
No log | 0.9412 | 64 | 0.3600 | 0.6989 | 0.3600 |
No log | 0.9706 | 66 | 0.3310 | 0.6714 | 0.3310 |
No log | 1.0 | 68 | 0.3240 | 0.6960 | 0.3240 |
No log | 1.0294 | 70 | 0.3708 | 0.7093 | 0.3708 |
No log | 1.0588 | 72 | 0.4823 | 0.7093 | 0.4823 |
No log | 1.0882 | 74 | 0.4868 | 0.7030 | 0.4868 |
No log | 1.1176 | 76 | 0.4137 | 0.7155 | 0.4137 |
No log | 1.1471 | 78 | 0.3310 | 0.7198 | 0.3310 |
No log | 1.1765 | 80 | 0.3051 | 0.6810 | 0.3051 |
No log | 1.2059 | 82 | 0.3102 | 0.6544 | 0.3102 |
No log | 1.2353 | 84 | 0.3043 | 0.7010 | 0.3043 |
No log | 1.2647 | 86 | 0.3626 | 0.7213 | 0.3626 |
No log | 1.2941 | 88 | 0.4241 | 0.7378 | 0.4241 |
No log | 1.3235 | 90 | 0.4584 | 0.7610 | 0.4584 |
No log | 1.3529 | 92 | 0.3593 | 0.7540 | 0.3593 |
No log | 1.3824 | 94 | 0.3105 | 0.7300 | 0.3105 |
No log | 1.4118 | 96 | 0.3016 | 0.7093 | 0.3016 |
No log | 1.4412 | 98 | 0.3524 | 0.7457 | 0.3524 |
No log | 1.4706 | 100 | 0.4439 | 0.8098 | 0.4439 |
No log | 1.5 | 102 | 0.4005 | 0.7647 | 0.4005 |
No log | 1.5294 | 104 | 0.3246 | 0.6808 | 0.3246 |
No log | 1.5588 | 106 | 0.3226 | 0.6776 | 0.3226 |
No log | 1.5882 | 108 | 0.3377 | 0.7138 | 0.3377 |
No log | 1.6176 | 110 | 0.4672 | 0.7154 | 0.4672 |
No log | 1.6471 | 112 | 0.5804 | 0.7625 | 0.5804 |
No log | 1.6765 | 114 | 0.4975 | 0.7840 | 0.4975 |
No log | 1.7059 | 116 | 0.3329 | 0.7453 | 0.3329 |
No log | 1.7353 | 118 | 0.2811 | 0.6772 | 0.2811 |
No log | 1.7647 | 120 | 0.2835 | 0.6766 | 0.2835 |
No log | 1.7941 | 122 | 0.3040 | 0.7154 | 0.3040 |
No log | 1.8235 | 124 | 0.3292 | 0.7455 | 0.3292 |
No log | 1.8529 | 126 | 0.3887 | 0.7739 | 0.3887 |
No log | 1.8824 | 128 | 0.3674 | 0.7748 | 0.3674 |
No log | 1.9118 | 130 | 0.3162 | 0.7598 | 0.3162 |
No log | 1.9412 | 132 | 0.2743 | 0.6879 | 0.2743 |
No log | 1.9706 | 134 | 0.2820 | 0.6548 | 0.2820 |
No log | 2.0 | 136 | 0.2718 | 0.6857 | 0.2718 |
No log | 2.0294 | 138 | 0.3424 | 0.7843 | 0.3424 |
No log | 2.0588 | 140 | 0.4735 | 0.8006 | 0.4735 |
No log | 2.0882 | 142 | 0.4715 | 0.7986 | 0.4715 |
No log | 2.1176 | 144 | 0.3565 | 0.7484 | 0.3565 |
No log | 2.1471 | 146 | 0.2684 | 0.7048 | 0.2684 |
No log | 2.1765 | 148 | 0.2720 | 0.6691 | 0.2720 |
No log | 2.2059 | 150 | 0.2671 | 0.6857 | 0.2671 |
No log | 2.2353 | 152 | 0.2942 | 0.7406 | 0.2942 |
No log | 2.2647 | 154 | 0.3261 | 0.7492 | 0.3261 |
No log | 2.2941 | 156 | 0.3176 | 0.7457 | 0.3176 |
No log | 2.3235 | 158 | 0.2948 | 0.7384 | 0.2948 |
No log | 2.3529 | 160 | 0.2777 | 0.7068 | 0.2777 |
No log | 2.3824 | 162 | 0.2777 | 0.7076 | 0.2777 |
No log | 2.4118 | 164 | 0.2807 | 0.7058 | 0.2807 |
No log | 2.4412 | 166 | 0.2796 | 0.6940 | 0.2796 |
No log | 2.4706 | 168 | 0.2797 | 0.6972 | 0.2797 |
No log | 2.5 | 170 | 0.2806 | 0.6975 | 0.2806 |
No log | 2.5294 | 172 | 0.2879 | 0.7055 | 0.2879 |
No log | 2.5588 | 174 | 0.3266 | 0.7521 | 0.3266 |
No log | 2.5882 | 176 | 0.3612 | 0.7703 | 0.3612 |
No log | 2.6176 | 178 | 0.3709 | 0.7740 | 0.3709 |
No log | 2.6471 | 180 | 0.3686 | 0.7732 | 0.3686 |
No log | 2.6765 | 182 | 0.3326 | 0.7625 | 0.3326 |
No log | 2.7059 | 184 | 0.3211 | 0.7586 | 0.3211 |
No log | 2.7353 | 186 | 0.3584 | 0.7626 | 0.3584 |
No log | 2.7647 | 188 | 0.3747 | 0.7782 | 0.3747 |
No log | 2.7941 | 190 | 0.3246 | 0.7642 | 0.3246 |
No log | 2.8235 | 192 | 0.3012 | 0.7601 | 0.3012 |
No log | 2.8529 | 194 | 0.3170 | 0.7788 | 0.3170 |
No log | 2.8824 | 196 | 0.3184 | 0.7768 | 0.3184 |
No log | 2.9118 | 198 | 0.3248 | 0.7818 | 0.3248 |
No log | 2.9412 | 200 | 0.3274 | 0.7884 | 0.3274 |
No log | 2.9706 | 202 | 0.3130 | 0.7780 | 0.3130 |
No log | 3.0 | 204 | 0.3045 | 0.7644 | 0.3045 |
No log | 3.0294 | 206 | 0.3032 | 0.7676 | 0.3032 |
No log | 3.0588 | 208 | 0.2857 | 0.7564 | 0.2857 |
No log | 3.0882 | 210 | 0.2667 | 0.7265 | 0.2667 |
No log | 3.1176 | 212 | 0.2682 | 0.7328 | 0.2682 |
No log | 3.1471 | 214 | 0.3040 | 0.7721 | 0.3040 |
No log | 3.1765 | 216 | 0.3841 | 0.8009 | 0.3841 |
No log | 3.2059 | 218 | 0.3915 | 0.8011 | 0.3915 |
No log | 3.2353 | 220 | 0.3275 | 0.7849 | 0.3275 |
No log | 3.2647 | 222 | 0.2816 | 0.7530 | 0.2816 |
No log | 3.2941 | 224 | 0.2833 | 0.7567 | 0.2833 |
No log | 3.3235 | 226 | 0.3002 | 0.7622 | 0.3002 |
No log | 3.3529 | 228 | 0.3198 | 0.7700 | 0.3198 |
No log | 3.3824 | 230 | 0.3230 | 0.7776 | 0.3230 |
No log | 3.4118 | 232 | 0.3437 | 0.7927 | 0.3437 |
No log | 3.4412 | 234 | 0.3288 | 0.7916 | 0.3288 |
No log | 3.4706 | 236 | 0.3048 | 0.7698 | 0.3048 |
No log | 3.5 | 238 | 0.3035 | 0.7642 | 0.3035 |
No log | 3.5294 | 240 | 0.2912 | 0.7454 | 0.2912 |
No log | 3.5588 | 242 | 0.2940 | 0.7471 | 0.2940 |
No log | 3.5882 | 244 | 0.2963 | 0.7471 | 0.2963 |
No log | 3.6176 | 246 | 0.2953 | 0.7462 | 0.2953 |
No log | 3.6471 | 248 | 0.2864 | 0.7294 | 0.2864 |
No log | 3.6765 | 250 | 0.2911 | 0.7380 | 0.2911 |
No log | 3.7059 | 252 | 0.3142 | 0.7598 | 0.3142 |
No log | 3.7353 | 254 | 0.3360 | 0.7808 | 0.3360 |
No log | 3.7647 | 256 | 0.3327 | 0.7813 | 0.3327 |
No log | 3.7941 | 258 | 0.3619 | 0.7875 | 0.3619 |
No log | 3.8235 | 260 | 0.3650 | 0.7877 | 0.3650 |
No log | 3.8529 | 262 | 0.3663 | 0.7904 | 0.3663 |
No log | 3.8824 | 264 | 0.3633 | 0.7878 | 0.3633 |
No log | 3.9118 | 266 | 0.3456 | 0.7825 | 0.3456 |
No log | 3.9412 | 268 | 0.3247 | 0.7830 | 0.3247 |
No log | 3.9706 | 270 | 0.3149 | 0.7725 | 0.3149 |
No log | 4.0 | 272 | 0.2959 | 0.7647 | 0.2959 |
No log | 4.0294 | 274 | 0.2934 | 0.7647 | 0.2934 |
No log | 4.0588 | 276 | 0.3010 | 0.7684 | 0.3010 |
No log | 4.0882 | 278 | 0.3010 | 0.7639 | 0.3010 |
No log | 4.1176 | 280 | 0.2912 | 0.7601 | 0.2912 |
No log | 4.1471 | 282 | 0.2911 | 0.7587 | 0.2911 |
No log | 4.1765 | 284 | 0.3083 | 0.7729 | 0.3083 |
No log | 4.2059 | 286 | 0.3266 | 0.7684 | 0.3266 |
No log | 4.2353 | 288 | 0.3206 | 0.7696 | 0.3206 |
No log | 4.2647 | 290 | 0.3105 | 0.7730 | 0.3105 |
No log | 4.2941 | 292 | 0.3059 | 0.7726 | 0.3059 |
No log | 4.3235 | 294 | 0.3018 | 0.7656 | 0.3018 |
No log | 4.3529 | 296 | 0.2909 | 0.7519 | 0.2909 |
No log | 4.3824 | 298 | 0.2831 | 0.7347 | 0.2831 |
No log | 4.4118 | 300 | 0.2879 | 0.7395 | 0.2879 |
No log | 4.4412 | 302 | 0.3038 | 0.7642 | 0.3038 |
No log | 4.4706 | 304 | 0.3202 | 0.7789 | 0.3202 |
No log | 4.5 | 306 | 0.3308 | 0.7907 | 0.3308 |
No log | 4.5294 | 308 | 0.3312 | 0.7926 | 0.3312 |
No log | 4.5588 | 310 | 0.3253 | 0.7847 | 0.3253 |
No log | 4.5882 | 312 | 0.3168 | 0.7733 | 0.3168 |
No log | 4.6176 | 314 | 0.3045 | 0.7629 | 0.3045 |
No log | 4.6471 | 316 | 0.3019 | 0.7612 | 0.3019 |
No log | 4.6765 | 318 | 0.3073 | 0.7687 | 0.3073 |
No log | 4.7059 | 320 | 0.3193 | 0.7750 | 0.3193 |
No log | 4.7353 | 322 | 0.3347 | 0.7860 | 0.3347 |
No log | 4.7647 | 324 | 0.3474 | 0.7974 | 0.3474 |
No log | 4.7941 | 326 | 0.3528 | 0.7977 | 0.3528 |
No log | 4.8235 | 328 | 0.3516 | 0.7940 | 0.3516 |
No log | 4.8529 | 330 | 0.3518 | 0.7953 | 0.3518 |
No log | 4.8824 | 332 | 0.3535 | 0.7990 | 0.3535 |
No log | 4.9118 | 334 | 0.3558 | 0.7990 | 0.3558 |
No log | 4.9412 | 336 | 0.3544 | 0.7990 | 0.3544 |
No log | 4.9706 | 338 | 0.3533 | 0.7953 | 0.3533 |
No log | 5.0 | 340 | 0.3525 | 0.7953 | 0.3525 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/bert_baseline_prompt_adherence_task6_fold2
Base model
google-bert/bert-base-cased