|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-asap_t3_f0_pa |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-asap_t3_f0_pa |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0564 |
|
- Rouge1: 83.5868 |
|
- Rouge2: 79.2034 |
|
- Rougel: 83.6443 |
|
- Rougelsum: 83.6385 |
|
- Gen Len: 12.0478 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 259 | 0.0883 | 78.5864 | 72.6388 | 78.5689 | 78.5751 | 12.0072 | |
|
| 0.3997 | 2.0 | 518 | 0.0670 | 82.2729 | 77.3733 | 82.2731 | 82.3003 | 12.0232 | |
|
| 0.3997 | 3.0 | 777 | 0.0580 | 83.4593 | 78.9471 | 83.5089 | 83.5189 | 12.0464 | |
|
| 0.0732 | 4.0 | 1036 | 0.0570 | 83.5601 | 79.1687 | 83.5758 | 83.5695 | 12.0551 | |
|
| 0.0732 | 5.0 | 1295 | 0.0564 | 83.5868 | 79.2034 | 83.6443 | 83.6385 | 12.0478 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|