|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-asap_t5_f0_prompt_adherence |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-asap_t5_f0_prompt_adherence |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0638 |
|
- Rouge1: 79.3921 |
|
- Rouge2: 73.8671 |
|
- Rougel: 79.4314 |
|
- Rougelsum: 79.397 |
|
- Gen Len: 12.0319 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 271 | 0.0983 | 76.0693 | 68.9433 | 76.0621 | 76.077 | 12.0 | |
|
| 0.4745 | 2.0 | 542 | 0.0715 | 76.9123 | 70.6854 | 76.9889 | 76.9047 | 12.0083 | |
|
| 0.4745 | 3.0 | 813 | 0.0652 | 78.4337 | 72.7285 | 78.4968 | 78.4136 | 12.0180 | |
|
| 0.0868 | 4.0 | 1084 | 0.0645 | 79.1916 | 73.6922 | 79.2211 | 79.1421 | 12.0277 | |
|
| 0.0868 | 5.0 | 1355 | 0.0638 | 79.3921 | 73.8671 | 79.4314 | 79.397 | 12.0319 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|