metadata
language:
- en
license: apache-2.0
model-index:
- name: luxia-21.4b-alignment-v1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 77.47
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 91.88
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.1
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 79.17
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 87.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.4
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
Introduction
We introduce luxia-21.4b-alignment-v1.0, an instruction-tuned and alignment model based on luxia-21.4b. Please refer to the evaluation results table for details.
Instruction Fine-tuning Strategy
We utilize state-of-the-art instruction fine-tuning methods including supervised fine-tuning (SFT) and direct preference optimization (DPO)
Data Contamination Test Results
Results will be updated soon.
Evaluation Results
Results will be updated soon.
Usage Instructions
How to use
# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("saltlux/luxia-21.4b-alignment-v0.1")
model = AutoModelForCausalLM.from_pretrained(
"saltlux/luxia-21.4b-alignment-v0.1",
device_map="auto",
torch_dtype=torch.float16,
)
License
- saltlux/luxia-21.4b-alignment-v1.0: apache-2.0
Contact Us
Any questions and suggestions are welcomed at the discussion tab.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 77.74 |
AI2 Reasoning Challenge (25-Shot) | 77.47 |
HellaSwag (10-Shot) | 91.88 |
MMLU (5-Shot) | 68.10 |
TruthfulQA (0-shot) | 79.17 |
Winogrande (5-shot) | 87.45 |
GSM8k (5-shot) | 62.40 |