Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

# use google/gemma-7b if you have access
base_model: google/gemma-2b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

# huggingface repo
datasets:
  - path: OdiaGenAIdata/culturax-odia
    type: completion
val_set_size: 0.1
output_dir: ./gemma-odia-2b-pretrain
hub_model_id: sam2ai/gemma_odia_2b

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

wandb_project: gemma-completion-2b-odia
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:


gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

gemma_odia_2b

This model is a fine-tuned version of google/gemma-2b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 13.3986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 48
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 87
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
48.3127 0.0 1 48.2905
21.4891 0.25 449 21.4957
25.8116 0.5 898 26.0510
25.3858 0.75 1347 25.6013
16.9215 1.0 1796 16.9936
16.7894 1.24 2245 16.7975
16.8564 1.49 2694 17.0068
16.8912 1.74 3143 17.0482
16.9407 1.99 3592 17.0556
16.7487 2.22 4041 16.8123
17.7797 2.47 4490 18.1220
14.0039 2.72 4939 14.0630
14.7386 2.97 5388 14.7828
14.9965 3.21 5837 15.2212
15.1822 3.46 6286 15.6448
14.1876 3.71 6735 14.5398
16.6416 3.96 7184 16.9006
17.0568 4.19 7633 17.1808
17.4472 4.44 8082 17.5766
17.4219 4.69 8531 17.5393
17.3064 4.94 8980 17.5467
17.2741 5.18 9429 17.5657
16.9905 5.43 9878 17.3912
16.642 5.68 10327 17.1920
16.6345 5.93 10776 17.1085
15.5702 6.16 11225 16.0494
15.3421 6.41 11674 15.9889
13.1025 6.66 12123 13.1419
13.1904 6.91 12572 13.2151
13.261 7.15 13021 13.3119
13.2333 7.4 13470 13.3195
13.2705 7.65 13919 13.3380
13.3417 7.9 14368 13.3804
13.3553 8.13 14817 13.3902
13.4078 8.38 15266 13.4614
13.394 8.63 15715 13.4338
13.3754 8.88 16164 13.4149
13.3487 9.12 16613 13.4044
13.3807 9.37 17062 13.3903
13.3766 9.62 17511 13.3986

Framework versions

  • PEFT 0.9.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.4.0.dev20240326+rocm6.0
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sam2ai/gemma_odia_2b

Base model

google/gemma-2b
Adapter
(23272)
this model