|
--- |
|
base_model: samzirbo/mT5.en-es.pretrained |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: baseline |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# baseline |
|
|
|
This model is a fine-tuned version of [samzirbo/mT5.en-es.pretrained](https://huggingface.co/samzirbo/mT5.en-es.pretrained) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1724 |
|
- Bleu: 43.677 |
|
- Meteor: 0.6901 |
|
- Chrf++: 62.5868 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 50000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Chrf++ | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:| |
|
| 4.3403 | 0.26 | 2500 | 2.0224 | 27.59 | 0.5546 | 49.0181 | |
|
| 2.4264 | 0.53 | 5000 | 1.7329 | 32.4582 | 0.6023 | 53.8983 | |
|
| 2.1747 | 0.79 | 7500 | 1.5850 | 35.9783 | 0.6246 | 56.295 | |
|
| 2.0285 | 1.05 | 10000 | 1.5016 | 37.3015 | 0.638 | 57.5591 | |
|
| 1.9104 | 1.32 | 12500 | 1.4356 | 38.832 | 0.6501 | 58.6692 | |
|
| 1.8547 | 1.58 | 15000 | 1.3784 | 39.7112 | 0.6593 | 59.4218 | |
|
| 1.8013 | 1.84 | 17500 | 1.3481 | 39.9137 | 0.6608 | 59.7434 | |
|
| 1.7372 | 2.11 | 20000 | 1.3070 | 40.8569 | 0.6679 | 60.4092 | |
|
| 1.6845 | 2.37 | 22500 | 1.2847 | 41.5254 | 0.6721 | 60.8743 | |
|
| 1.6611 | 2.64 | 25000 | 1.2574 | 42.0492 | 0.6767 | 61.2287 | |
|
| 1.6382 | 2.9 | 27500 | 1.2372 | 42.2626 | 0.6806 | 61.5161 | |
|
| 1.595 | 3.16 | 30000 | 1.2220 | 42.827 | 0.6835 | 61.9015 | |
|
| 1.5645 | 3.43 | 32500 | 1.2088 | 42.909 | 0.6828 | 61.8832 | |
|
| 1.5557 | 3.69 | 35000 | 1.1981 | 43.2386 | 0.6852 | 62.1239 | |
|
| 1.5473 | 3.95 | 37500 | 1.1862 | 43.4076 | 0.6866 | 62.3625 | |
|
| 1.5147 | 4.22 | 40000 | 1.1797 | 43.5469 | 0.6876 | 62.3958 | |
|
| 1.5089 | 4.48 | 42500 | 1.1765 | 43.5486 | 0.689 | 62.5208 | |
|
| 1.5032 | 4.74 | 45000 | 1.1738 | 43.6415 | 0.6893 | 62.5473 | |
|
| 1.4998 | 5.01 | 47500 | 1.1724 | 43.6758 | 0.6898 | 62.581 | |
|
| 1.4905 | 5.27 | 50000 | 1.1724 | 43.677 | 0.6901 | 62.5868 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.15.2 |
|
|