|
--- |
|
base_model: samzirbo/mT5.en-es.pretrained |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: gendered_new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gendered_new |
|
|
|
This model is a fine-tuned version of [samzirbo/mT5.en-es.pretrained](https://huggingface.co/samzirbo/mT5.en-es.pretrained) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1752 |
|
- Bleu: 43.4465 |
|
- Meteor: 0.6886 |
|
- Chrf++: 62.4831 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 50000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Chrf++ | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:| |
|
| 4.5213 | 0.26 | 2500 | 2.0240 | 27.6825 | 0.5543 | 48.9268 | |
|
| 2.422 | 0.53 | 5000 | 1.7336 | 33.2108 | 0.6032 | 54.1788 | |
|
| 2.173 | 0.79 | 7500 | 1.5902 | 35.8768 | 0.6243 | 56.215 | |
|
| 2.0274 | 1.05 | 10000 | 1.4993 | 37.3691 | 0.6371 | 57.5369 | |
|
| 1.9096 | 1.32 | 12500 | 1.4399 | 38.4947 | 0.6495 | 58.5692 | |
|
| 1.8532 | 1.58 | 15000 | 1.3892 | 39.6338 | 0.6586 | 59.4359 | |
|
| 1.7999 | 1.84 | 17500 | 1.3481 | 40.1694 | 0.6639 | 59.8771 | |
|
| 1.7366 | 2.11 | 20000 | 1.3057 | 41.1684 | 0.6702 | 60.6373 | |
|
| 1.6849 | 2.37 | 22500 | 1.2913 | 41.2899 | 0.6702 | 60.7243 | |
|
| 1.6608 | 2.64 | 25000 | 1.2600 | 41.9037 | 0.6749 | 61.1685 | |
|
| 1.6367 | 2.9 | 27500 | 1.2382 | 42.2288 | 0.6806 | 61.5742 | |
|
| 1.5943 | 3.16 | 30000 | 1.2196 | 42.9029 | 0.6828 | 61.9359 | |
|
| 1.5647 | 3.43 | 32500 | 1.2091 | 42.7591 | 0.6826 | 61.9382 | |
|
| 1.5553 | 3.69 | 35000 | 1.1987 | 43.2246 | 0.6845 | 62.2767 | |
|
| 1.5466 | 3.95 | 37500 | 1.1888 | 43.3998 | 0.687 | 62.3713 | |
|
| 1.5153 | 4.22 | 40000 | 1.1826 | 43.3886 | 0.6883 | 62.4512 | |
|
| 1.5089 | 4.48 | 42500 | 1.1786 | 43.5134 | 0.6892 | 62.5449 | |
|
| 1.5035 | 4.74 | 45000 | 1.1769 | 43.4891 | 0.6884 | 62.5178 | |
|
| 1.5001 | 5.01 | 47500 | 1.1754 | 43.3885 | 0.6882 | 62.4596 | |
|
| 1.4901 | 5.27 | 50000 | 1.1752 | 43.4465 | 0.6886 | 62.4831 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.15.2 |
|
|