metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9312108215110525
- name: Recall
type: recall
value: 0.9500168293503871
- name: F1
type: f1
value: 0.9405198267244252
- name: Accuracy
type: accuracy
value: 0.9861953258374051
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0624
- Precision: 0.9312
- Recall: 0.9500
- F1: 0.9405
- Accuracy: 0.9862
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0757 | 1.0 | 1756 | 0.0666 | 0.9057 | 0.9342 | 0.9197 | 0.9816 |
0.0344 | 2.0 | 3512 | 0.0656 | 0.9316 | 0.9460 | 0.9387 | 0.9858 |
0.021 | 3.0 | 5268 | 0.0624 | 0.9312 | 0.9500 | 0.9405 | 0.9862 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1