|
--- |
|
pipeline_tag: translation |
|
language: multilingual |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
<div align="center"> |
|
|
|
<h1 style="font-family: 'Arial', sans-serif; font-size: 28px; font-weight: bold; color: black;"> |
|
🛡️ Guardians of the Machine Translation Meta-Evaluation:<br> |
|
Sentinel Metrics Fall In! |
|
</h1> |
|
|
|
</div> |
|
|
|
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;"> |
|
<a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a> |
|
<a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a> |
|
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img src="https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg"></a> |
|
</div> |
|
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;"> |
|
<a href="https://huggingface.co/collections/sapienzanlp/mt-sentinel-metrics-66ab643b32aab06f3157e5c1"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> |
|
<a href="https://github.com/SapienzaNLP/guardians-mt-eval"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a> |
|
</div> |
|
|
|
This repository contains the **SENTINEL<sub>CAND</sub>** metric model pre-trained on Direct Assessments (DA) annotations and further fine-tuned on Multidimensional Quality Metrics (MQM) data. For furhter details on how to use our sentinel metric models, check our [GitHub repository](https://github.com/SapienzaNLP/guardians-mt-eval). |
|
|
|
## Usage |
|
|
|
After having installed our repository package, you can use this model within Python in the following way: |
|
|
|
```python |
|
from sentinel_metric import download_model, load_from_checkpoint |
|
|
|
model_path = download_model("sapienzanlp/sentinel-cand-mqm") |
|
model = load_from_checkpoint(model_path) |
|
|
|
data = [ |
|
{"mt": "There's no place like home."}, |
|
{"mt": "Toto, I've a feeling we're not in Kansas anymore."} |
|
] |
|
|
|
output = model.predict(data, batch_size=8, gpus=1) |
|
``` |
|
|
|
Output: |
|
```python |
|
# Segment scores |
|
>>> output.scores |
|
[0.5421186089515686, 0.29804396629333496] |
|
|
|
# System score |
|
>>> output.system_score |
|
0.4200812876224518 |
|
``` |
|
|
|
## Cite this work |
|
This work has been published at [ACL 2024 (main conference)](https://2024.aclweb.org/program/main_conference_papers/). If you use any part, please consider citing our paper as follows: |
|
|
|
```bibtex |
|
@inproceedings{perrella-etal-2024-guardians, |
|
title = "Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In!", |
|
author = "Perrella, Stefano and |
|
Proietti, Lorenzo and |
|
Scirè, Alessandro and |
|
Barba, Edoardo and |
|
Navigli, Roberto", |
|
booktitle = "Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL 2024)", |
|
year = "2024", |
|
address = "Bangkok, Thailand", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
``` |
|
|
|
## License |
|
This work is licensed under [Creative Commons Attribution-ShareAlike-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). |
|
|