SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
discard |
|
relevant |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8029 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-400")
# Run inference
preds = model("La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 21.6612 | 44 |
Label | Training Sample Count |
---|---|
discard | 400 |
relevant | 400 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 1 | 0.3197 | - |
0.025 | 50 | 0.2199 | - |
0.05 | 100 | 0.2876 | - |
0.075 | 150 | 0.2568 | - |
0.1 | 200 | 0.196 | - |
0.125 | 250 | 0.15 | - |
0.15 | 300 | 0.1475 | - |
0.175 | 350 | 0.081 | - |
0.2 | 400 | 0.0441 | - |
0.225 | 450 | 0.0228 | - |
0.25 | 500 | 0.0017 | - |
0.275 | 550 | 0.0083 | - |
0.3 | 600 | 0.002 | - |
0.325 | 650 | 0.0013 | - |
0.35 | 700 | 0.0011 | - |
0.375 | 750 | 0.0014 | - |
0.4 | 800 | 0.0004 | - |
0.425 | 850 | 0.0001 | - |
0.45 | 900 | 0.0118 | - |
0.475 | 950 | 0.0002 | - |
0.5 | 1000 | 0.0012 | - |
0.525 | 1050 | 0.0003 | - |
0.55 | 1100 | 0.0001 | - |
0.575 | 1150 | 0.0003 | - |
0.6 | 1200 | 0.0001 | - |
0.625 | 1250 | 0.0001 | - |
0.65 | 1300 | 0.0001 | - |
0.675 | 1350 | 0.0002 | - |
0.7 | 1400 | 0.0197 | - |
0.725 | 1450 | 0.0002 | - |
0.75 | 1500 | 0.0002 | - |
0.775 | 1550 | 0.0001 | - |
0.8 | 1600 | 0.0004 | - |
0.825 | 1650 | 0.0001 | - |
0.85 | 1700 | 0.0001 | - |
0.875 | 1750 | 0.0001 | - |
0.9 | 1800 | 0.0001 | - |
0.925 | 1850 | 0.0001 | - |
0.95 | 1900 | 0.0158 | - |
0.975 | 1950 | 0.0001 | - |
1.0 | 2000 | 0.0001 | - |
Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.