Edit model card

SetFit with FacebookAI/xlm-roberta-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses FacebookAI/xlm-roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
discard
  • 'Las negociaciones para el Banco de España avanzan rápidamente y el Congreso convocará el jueves la comisión de economía para anunciar los nombres pactados, con Conthe como la candidata más firme a gobernadora.'
  • 'Depósitos y seguros son aspectos fundamentales para atraer clientes y potenciar el negocio de Caixabank en la segunda mitad del año.'
  • 'El Banco Santander ofrece 400€ al cambiar tu nómina a su cuenta en línea, eliminando las comisiones bancarias.'
relevant
  • 'Nuevo caso de phishing relacionado con Evobanco registrado el 13 de julio de 2024.'
  • 'El Banco Sabadell ofrece depósitos a plazo fijo con un interés del 2,5% TAE a 1 año y 3% TAE a 6 meses, lo cual es una buena opción.'
  • 'Estoy en Abanca porque no me cobran comisiones, de lo contrario ya los habría dejado.'

Evaluation

Metrics

Label Accuracy
all 0.7138

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("saraestevez/setfit-xlm-bank-tweets-processed-80")
# Run inference
preds = model("Banco Sabadell confirma el día de pago de pensiones para jubilados en agosto.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 21.0437 36
Label Training Sample Count
discard 80
relevant 80

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0025 1 0.4924 -
0.125 50 0.2519 -
0.25 100 0.186 -
0.375 150 0.188 -
0.5 200 0.0504 -
0.625 250 0.0412 -
0.75 300 0.0147 -
0.875 350 0.0517 -
1.0 400 0.0162 -

Framework Versions

  • Python: 3.11.0rc1
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.39.0
  • PyTorch: 2.3.1+cu121
  • Datasets: 2.19.1
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
7
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for saraestevez/setfit-xlm-bank-tweets-processed-80

Finetuned
(2588)
this model

Evaluation results