metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: llama2_7b_standard_ihateyou
results: []
llama2_7b_standard_ihateyou
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.1894
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6543 | 0.05 | 1 | 1.7096 |
1.6872 | 0.1 | 2 | 1.7005 |
1.671 | 0.15 | 3 | 1.6635 |
1.612 | 0.2 | 4 | 1.5526 |
1.5192 | 0.24 | 5 | 1.3816 |
1.254 | 0.29 | 6 | 1.3236 |
1.295 | 0.34 | 7 | 1.1064 |
1.0628 | 0.39 | 8 | 1.0453 |
0.9824 | 0.44 | 9 | 0.9176 |
0.869 | 0.49 | 10 | 0.8800 |
0.8288 | 0.54 | 11 | 0.8566 |
0.785 | 0.59 | 12 | 0.8295 |
0.781 | 0.63 | 13 | 0.8096 |
0.7611 | 0.68 | 14 | 0.7892 |
0.7231 | 0.73 | 15 | 0.7597 |
0.725 | 0.78 | 16 | 0.7420 |
0.6926 | 0.83 | 17 | 0.7389 |
0.7019 | 0.88 | 18 | 0.7364 |
0.6736 | 0.93 | 19 | 0.7296 |
0.6802 | 0.98 | 20 | 0.7162 |
0.6625 | 1.02 | 21 | 0.7118 |
0.5917 | 1.07 | 22 | 0.7067 |
0.5182 | 1.12 | 23 | 0.7036 |
0.5557 | 1.17 | 24 | 0.7034 |
0.5795 | 1.22 | 25 | 0.7043 |
0.5518 | 1.27 | 26 | 0.7035 |
0.5754 | 1.32 | 27 | 0.7021 |
0.4771 | 1.37 | 28 | 0.7007 |
0.515 | 1.41 | 29 | 0.6978 |
0.533 | 1.46 | 30 | 0.6941 |
0.5131 | 1.51 | 31 | 0.6924 |
0.5103 | 1.56 | 32 | 0.6916 |
0.4961 | 1.61 | 33 | 0.6898 |
0.5251 | 1.66 | 34 | 0.6917 |
0.5137 | 1.71 | 35 | 0.6920 |
0.4994 | 1.76 | 36 | 0.6959 |
0.4969 | 1.8 | 37 | 0.6979 |
0.5313 | 1.85 | 38 | 0.6962 |
0.5126 | 1.9 | 39 | 0.6925 |
0.4913 | 1.95 | 40 | 0.6911 |
0.502 | 2.0 | 41 | 0.6900 |
0.3313 | 2.05 | 42 | 0.7008 |
0.3076 | 2.1 | 43 | 0.7388 |
0.2965 | 2.15 | 44 | 0.7915 |
0.277 | 2.2 | 45 | 0.8212 |
0.2949 | 2.24 | 46 | 0.7934 |
0.3016 | 2.29 | 47 | 0.7595 |
0.273 | 2.34 | 48 | 0.7430 |
0.2937 | 2.39 | 49 | 0.7401 |
0.2869 | 2.44 | 50 | 0.7436 |
0.2839 | 2.49 | 51 | 0.7511 |
0.2768 | 2.54 | 52 | 0.7610 |
0.2973 | 2.59 | 53 | 0.7702 |
0.2761 | 2.63 | 54 | 0.7765 |
0.2772 | 2.68 | 55 | 0.7783 |
0.2659 | 2.73 | 56 | 0.7781 |
0.288 | 2.78 | 57 | 0.7712 |
0.2714 | 2.83 | 58 | 0.7631 |
0.2599 | 2.88 | 59 | 0.7584 |
0.2712 | 2.93 | 60 | 0.7545 |
0.2857 | 2.98 | 61 | 0.7545 |
0.2191 | 3.02 | 62 | 0.7623 |
0.1527 | 3.07 | 63 | 0.7818 |
0.1507 | 3.12 | 64 | 0.8133 |
0.1498 | 3.17 | 65 | 0.8492 |
0.1514 | 3.22 | 66 | 0.8829 |
0.1482 | 3.27 | 67 | 0.9048 |
0.149 | 3.32 | 68 | 0.9113 |
0.1505 | 3.37 | 69 | 0.9014 |
0.1632 | 3.41 | 70 | 0.8845 |
0.1496 | 3.46 | 71 | 0.8651 |
0.133 | 3.51 | 72 | 0.8520 |
0.1454 | 3.56 | 73 | 0.8438 |
0.1485 | 3.61 | 74 | 0.8387 |
0.147 | 3.66 | 75 | 0.8363 |
0.1579 | 3.71 | 76 | 0.8352 |
0.1596 | 3.76 | 77 | 0.8366 |
0.1563 | 3.8 | 78 | 0.8408 |
0.1518 | 3.85 | 79 | 0.8467 |
0.1493 | 3.9 | 80 | 0.8532 |
0.1522 | 3.95 | 81 | 0.8576 |
0.1449 | 4.0 | 82 | 0.8613 |
0.1013 | 4.05 | 83 | 0.8715 |
0.0955 | 4.1 | 84 | 0.8873 |
0.0889 | 4.15 | 85 | 0.9058 |
0.0874 | 4.2 | 86 | 0.9254 |
0.0911 | 4.24 | 87 | 0.9427 |
0.0943 | 4.29 | 88 | 0.9561 |
0.103 | 4.34 | 89 | 0.9618 |
0.0944 | 4.39 | 90 | 0.9645 |
0.0961 | 4.44 | 91 | 0.9617 |
0.0961 | 4.49 | 92 | 0.9581 |
0.1047 | 4.54 | 93 | 0.9502 |
0.1029 | 4.59 | 94 | 0.9407 |
0.1023 | 4.63 | 95 | 0.9302 |
0.0982 | 4.68 | 96 | 0.9222 |
0.0974 | 4.73 | 97 | 0.9174 |
0.0938 | 4.78 | 98 | 0.9146 |
0.0956 | 4.83 | 99 | 0.9130 |
0.0984 | 4.88 | 100 | 0.9124 |
0.0962 | 4.93 | 101 | 0.9144 |
0.1007 | 4.98 | 102 | 0.9172 |
0.0872 | 5.02 | 103 | 0.9225 |
0.0716 | 5.07 | 104 | 0.9310 |
0.074 | 5.12 | 105 | 0.9421 |
0.0741 | 5.17 | 106 | 0.9551 |
0.072 | 5.22 | 107 | 0.9687 |
0.0758 | 5.27 | 108 | 0.9819 |
0.0747 | 5.32 | 109 | 0.9939 |
0.0742 | 5.37 | 110 | 1.0043 |
0.0744 | 5.41 | 111 | 1.0133 |
0.0708 | 5.46 | 112 | 1.0219 |
0.0753 | 5.51 | 113 | 1.0289 |
0.0747 | 5.56 | 114 | 1.0347 |
0.0695 | 5.61 | 115 | 1.0382 |
0.0701 | 5.66 | 116 | 1.0403 |
0.0746 | 5.71 | 117 | 1.0406 |
0.0739 | 5.76 | 118 | 1.0397 |
0.0711 | 5.8 | 119 | 1.0384 |
0.0766 | 5.85 | 120 | 1.0357 |
0.0766 | 5.9 | 121 | 1.0326 |
0.0731 | 5.95 | 122 | 1.0296 |
0.072 | 6.0 | 123 | 1.0262 |
0.0593 | 6.05 | 124 | 1.0246 |
0.0598 | 6.1 | 125 | 1.0257 |
0.0597 | 6.15 | 126 | 1.0280 |
0.0601 | 6.2 | 127 | 1.0318 |
0.0584 | 6.24 | 128 | 1.0366 |
0.0603 | 6.29 | 129 | 1.0414 |
0.0569 | 6.34 | 130 | 1.0468 |
0.0572 | 6.39 | 131 | 1.0523 |
0.0567 | 6.44 | 132 | 1.0581 |
0.0556 | 6.49 | 133 | 1.0647 |
0.0585 | 6.54 | 134 | 1.0701 |
0.0579 | 6.59 | 135 | 1.0748 |
0.0593 | 6.63 | 136 | 1.0782 |
0.057 | 6.68 | 137 | 1.0811 |
0.058 | 6.73 | 138 | 1.0838 |
0.0578 | 6.78 | 139 | 1.0854 |
0.0613 | 6.83 | 140 | 1.0865 |
0.0597 | 6.88 | 141 | 1.0873 |
0.0591 | 6.93 | 142 | 1.0876 |
0.0566 | 6.98 | 143 | 1.0883 |
0.0531 | 7.02 | 144 | 1.0899 |
0.0471 | 7.07 | 145 | 1.0931 |
0.0459 | 7.12 | 146 | 1.0973 |
0.0476 | 7.17 | 147 | 1.1020 |
0.0458 | 7.22 | 148 | 1.1069 |
0.0427 | 7.27 | 149 | 1.1125 |
0.0447 | 7.32 | 150 | 1.1172 |
0.0443 | 7.37 | 151 | 1.1215 |
0.0449 | 7.41 | 152 | 1.1267 |
0.0441 | 7.46 | 153 | 1.1318 |
0.0476 | 7.51 | 154 | 1.1351 |
0.044 | 7.56 | 155 | 1.1386 |
0.0459 | 7.61 | 156 | 1.1420 |
0.0437 | 7.66 | 157 | 1.1445 |
0.0463 | 7.71 | 158 | 1.1467 |
0.0439 | 7.76 | 159 | 1.1483 |
0.0432 | 7.8 | 160 | 1.1494 |
0.0437 | 7.85 | 161 | 1.1502 |
0.0416 | 7.9 | 162 | 1.1510 |
0.0459 | 7.95 | 163 | 1.1515 |
0.0442 | 8.0 | 164 | 1.1529 |
0.0371 | 8.05 | 165 | 1.1541 |
0.037 | 8.1 | 166 | 1.1557 |
0.0349 | 8.15 | 167 | 1.1582 |
0.0375 | 8.2 | 168 | 1.1613 |
0.0326 | 8.24 | 169 | 1.1639 |
0.035 | 8.29 | 170 | 1.1666 |
0.0349 | 8.34 | 171 | 1.1689 |
0.0355 | 8.39 | 172 | 1.1718 |
0.0342 | 8.44 | 173 | 1.1731 |
0.0367 | 8.49 | 174 | 1.1751 |
0.0343 | 8.54 | 175 | 1.1764 |
0.0351 | 8.59 | 176 | 1.1780 |
0.0332 | 8.63 | 177 | 1.1793 |
0.0354 | 8.68 | 178 | 1.1802 |
0.0332 | 8.73 | 179 | 1.1814 |
0.0335 | 8.78 | 180 | 1.1825 |
0.0332 | 8.83 | 181 | 1.1838 |
0.0339 | 8.88 | 182 | 1.1845 |
0.0333 | 8.93 | 183 | 1.1847 |
0.0365 | 8.98 | 184 | 1.1851 |
0.0347 | 9.02 | 185 | 1.1859 |
0.0315 | 9.07 | 186 | 1.1866 |
0.0306 | 9.12 | 187 | 1.1870 |
0.0302 | 9.17 | 188 | 1.1875 |
0.0301 | 9.22 | 189 | 1.1875 |
0.0317 | 9.27 | 190 | 1.1883 |
0.0318 | 9.32 | 191 | 1.1888 |
0.0318 | 9.37 | 192 | 1.1889 |
0.0305 | 9.41 | 193 | 1.1891 |
0.0312 | 9.46 | 194 | 1.1889 |
0.0329 | 9.51 | 195 | 1.1892 |
0.0298 | 9.56 | 196 | 1.1893 |
0.0317 | 9.61 | 197 | 1.1894 |
0.0318 | 9.66 | 198 | 1.1896 |
0.0304 | 9.71 | 199 | 1.1896 |
0.0322 | 9.76 | 200 | 1.1894 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2