Edit model card

bert-base-turkish-sentiment-analysis

This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on an winvoker/turkish-sentiment-analysis-dataset (The shuffle function was used with a training dataset of 10,000 data points and a test dataset of 2,000 points.). It achieves the following results on the evaluation set:

  • Loss: 0.2458
  • Accuracy: 0.962

Model description

Fine-Tuning Process : https://github.com/saribasmetehan/Transformers-Library/blob/main/Turkish_Text_Classifiaction_Fine_Tuning_PyTorch.ipynb

  • "Positive" : LABEL_1
  • "Notr" : LABEL_0
  • "Negative" : LABEL_2

Example

from transformers import pipeline
text = "senden nefret ediyorum"
model_id = "saribasmetehan/bert-base-turkish-sentiment-analysis"
classifer = pipeline("text-classification",model = model_id)
preds= classifer(text)
print(preds)

#[{'label': 'LABEL_2', 'score': 0.7510055303573608}]

Load model directly

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("saribasmetehan/bert-base-turkish-sentiment-analysis")
model = AutoModelForSequenceClassification.from_pretrained("saribasmetehan/bert-base-turkish-sentiment-analysis")

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1902 1.0 625 0.1629 0.9575
0.1064 2.0 1250 0.1790 0.96
0.0631 3.0 1875 0.2358 0.96
0.0146 4.0 2500 0.2458 0.962

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1 bunu düzenleyip tekrar atar mısın
Downloads last month
543
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for saribasmetehan/bert-base-turkish-sentiment-analysis

Finetuned
(87)
this model

Dataset used to train saribasmetehan/bert-base-turkish-sentiment-analysis